

STREAM
DATA

MANAGEMENT

ADVANCES IN DATABASE SYSTEMS

Series Editor
Ahmed K. Elmagarmid

Purdue University
West Lafayette, IN 47907

Other books in the Series:
FUZZY DATABASE MODELING WITH XML, Zongmin Ma, ISBN 0-387-

24248-1; e-ISBN 0-387-24249-X
MINING SEQUENTIAL PATTERNS FROM LARGE DATA SETS, Wei Wang

andJiong Yang; ISBN 0-387-24246-5; e-ISBN 0-387-24247-3
ADVANCED SIGNATURE INDEXING FOR MULTIMEDIA AND WEB

APPLICATIONS, Yannis Manolopoulos, Alexandros Nanopoulos, Eleni
Tousidou; ISBN: 1-4020-7425-5

ADVANCES IN DIGITAL GOVERNMENT, Technology, Human Factors, and
Policy, edited by William J. Mclver, Jr. and Ahmed K. Elmagarmid; ISBN: 1-
4020-7067-5

INFORMATION AND DATABASE QUALITY, Mario Piattini, Coral Calero and
Marcela Genero; ISBN: 0-7923- 7599-8

DATA QUALITY, Richard Y. Wang, Mostapha Ziad, Yang W. Lee: ISBN: 0-7923-
7215-8

THE FRACTAL STRUCTURE OF DATA REFERENCE: Applications to the
Memory Hierarchy, Bruce McNutt; ISBN: 0-7923-7945-4

SEMANTIC MODELS FOR MULTIMEDIA DATABASE SEARCHING AND
BROWSING, Shu-Ching Chen, R.L Kashyap, and Arif Ghafoor, ISBN: 0-7923-
7888-1

INFORMATION BROKERING ACROSS HETEROGENEOUS DIGITAL DATA:
A Metadata-based Approach, Vipul Kashyap, AmitSheth\ ISBN: 0-7923-7883-0

DATA DISSEMINATION IN WIRELESS COMPUTING ENVIRONMENTS,
Kian-Lee Tan and Beng Chin Ooi\ ISBN: 0-7923-7866-0

MIDDLEWARE NETWORKS: Concept, Design and Deployment of Internet
Infrastructure, Michah Lerner, George Vanecek, Nino Vidovic, Dad Vrsalovic;
ISBN: 0-7923-7840-7

ADVANCED DATABASE INDEXING, Yannis Manolopoulos, Yannis Theodoridis,
VassilisJ. Tsotras; ISBN: 0-7923-7716-8

MULTILEVEL SECURE TRANSACTION PROCESSING, Vijay Atluri, Sushil
Jajodia, Binto George ISBN: 0-7923-7702-8

FUZZY LOGIC IN DATA MODELING, Guoqing Chen ISBN: 0-7923-8253-6
INTERCONNECTING HETEROGENEOUS INFORMATION SYSTEMS, Athman

Bouguettaya, Boualem Benatallah, Ahmed Elmagarmid ISBN: 0-7923-8216-1
FOUNDATIONS OF KNOWLEDGE SYSTEMS: With Applications to Databases

and Agents, Gerd Wagner ISBN: 0-7923-8212-9
DATABASE RECOVERY, Vijay Kumar, Sang H, Son ISBN: 0-7923-8192-0

For a complete listing of books in this series, go to http://www.springeronline.com

STREAM
DATA

MANAGEMENT

edited by

Nauman A. Chaudhry
University of New Orleans, USA

Kevin Shaw
Naval Research Lab, USA

Mahdi Abdelguerfi
University of New Orleans, USA

fyj Springer

Nauman A, Chaudhry Kevin Shaw Mahdi Abdelguerfi
University of New Orleans Naval Research Lab University of New Orleans
USA USA USA

Library of Congress Cataloging-in-Publication Data

A CLP. Catalogue record for this book is available from the
Library of Congress.

STREAM DATA MANAGEMENT
edited by
Nauman A. Chaudhry
Kevin Shaw
Mahdi Abdelguerfi

Advances in Database Systems
Volume 30

ISBN 0-387-24393-3 e-ISBN 0-387-25229-0

Cover by Will Ladd, NRL Mapping, Charting and Geodesy Branch
utilizing NRL's GIDB® Portal System that can be utilized at
http://dmap.nrlssc.navy.mil

Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, Inc., 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11054597, 11403999

springeronline.com

Contents

List of Figures ix
List of Tables xi
Preface xiii

1
Introduction to Stream Data Management 1
Nauman A. Chaudhry

1. Why Stream Data Management? 1
1.1 Streaming Applications 2
1.2 Traditional Database Management Systems and Streaming Appli-

cations 3
1.3 Towards Stream Data Management Systems 4
1.4 Outline of the Rest of the Chapter 5

2. Stream Data Models and Query Languages 6
2.1 Timestamps 6
2.2 Windows 6
2.3 Proposed Stream Query Languages 7

3. Implementing Stream Query Operators 8
3.1 Query Operators and Optimization 8
3.2 Performance Measurement 8

4. Prototype Stream Data Management Systems 9
5. Tour of the Book 10
Acknowledgements 11
References 11

2
Query Execution and Optimization 15
StratisD. Viglas

1. Introduction 15
2. Query Execution 16

2.1 Projections and Selections 17
2.2 Join Evaluation 18

3. Static Optimization 22
3.1 Rate-based Query Optimization 23
3.2 Resource Allocation and Operator Scheduling 24
3.3 Quality of Service and Load Shedding 26

4. Adaptive Evaluation 28
4.1 Query Scrambling 28
4.2 Eddies and Stems 29

5. Summary 31

vi STREAM DATA MANAGEMENT

References 32

3
Filtering, Punctuation, Windows and Synopses 35
David Maier, Peter A. Tucker, and Minos Garofalakis

1. Introduction: Challenges for Processing Data Streams 36
2. Stream Filtering: Volume Reduction 37

2.1 Precise Filtering 37
2.2 Data Merging 38
2.3 Data Dropping 38
2.4 Filtering with Multiple Queries 40

3. Punctuations: Handling Unbounded Behavior by Exploiting Stream Se-
mantics 40
3.1 Punctuated Data Streams 41
3.2 Exploiting Punctuations 41
3.3 Using Punctuations in the Example Query 43
3.4 Sources of Punctuations 44
3.5 Open Issues 45
3.6 Summary 46

4. Windows: Handling Unbounded Behavior by Modifying Queries 46
5. Dealing with Disorder 47

5.1 Sources of Disorder 47
5.2 Handling Disorder 48
5.3 Summary 50

6. Synopses: Processing with Bounded Memory 50
6.1 Data-Stream Processing Model 51
6.2 Sketching Streams by Random Linear Projections: AMS Sketches 51
6.3 Sketching Streams by Hashing: FM Sketches 54
6.4 Summary 55

7. Discussion 55
Acknowledgments 56
References 56

4
XML & Data Streams 59
Nicolas Bruno, Luis Gravano, Nick Koudas, andDivesh Srivastava

1. Introduction 60
1.1 XML Databases 60
1.2 Streaming XML 61
1.3 Contributions 62

2. Models and Problem Statement 63
2.1 XML Documents 63
2.2 Query Language 64
2.3 Streaming Model 65
2.4 Problem Statement 65

3. XML Multiple Query Processing 66
3.1 Prefix Sharing 66
3.2 Y-Filter: A Navigation-Based Approach 67
3.3 Index-Filter: An Index-Based Approach 69
3.4 Summary of Experimental Results 75

4. Related Work 76
4.1 XML Databases 76
4.2 Streaming XML 77

Contents vii

4.3 Relational Stream Query Processing 78
5. Conclusions 78
References 79

5
CAPE: A Constraint-Aware Adaptive Stream Processing Engine 83
Elke A. Rundensteiner, Luping Ding, Yali Zhu, Timothy Sutherland and Bradford Pi-
elech

1. Introduction 83
1.1 Challenges in Streaming Data Processing 83
1.2 State-of-the-Art Stream Processing Systems 84
1.3 CAPE: Adaptivity and Constraint Exploitation 85

2. CAPE System Overview 85
3. Constraint-Exploiting Reactive Query Operators 87

3.1 Issues with Stream Join Algorithm 88
3.2 Constraint-Exploiting Join Algorithm 88
3.3 Optimizations Enabled by Combined Constraints 90
3.4 Adaptive Component-Based Execution Logic 91
3.5 Summaiy of Performance Evaluation 93

4. Adaptive Execution Scheduling 93
4.1 State-of-the-Art Operator Scheduling 94
4.2 The ASSA Framework 94
4.3 The ASSA Strategy: Metrics, Scoring and Selection 95
4.4 Summary of Performance Evaluation 98

5. Run-time Plan Optimization and Migration 98
5.1 Timing of Plan Re-optimization 99
5.2 Optimization Opportunities and Heuristics 99
5.3 New Issues for Dynamic Plan Migration 101
5.4 Migration Strategies in CAPE 102

6. Self-Adjusting Plan Distribution across Machines 104
6.1 Distributed Stream Processing Architecture 104
6.2 Strategies for Queiy Operator Distribution 106
6.3 Static Distribution Evaluation 107
6.4 Self-Adaptive Redistribution Strategies 107
6.5 Run-Time Redistribution Evaluation 108

7. Conclusion 109
References 109

6
Time Series Queries in Data Stream Management Systems 113
Yijian Bai, Chang R. Luo, Hetal Thakkar, and Carlo Zaniolo

1. Introduction 113
2. The ESL-TS Language 116

2.1 Repeating Patterns and Aggregates 117
2.2 Comparison with other Languages 120

3. ESL and User Defined Aggregates 121
4. ESL-TS Implementation 125
5. Optimization 127
6. Conclusion 129
Acknowledgmen ts 130
References 130

viii STREAM DATA MANAGEMENT
7
Managing Distributed Geographical Data Streams with the GIDB Protal 133

System
John T. Sample, Frank P. McCreedy, and Michael Thomas

1. Introduction 133
2. Geographic Data Servers 134

2.1 Types of Geographic Data 134
2.2 Types of Geographic Data Servers 136
2.3 Transport Mechani sms 137
2.4 Geographic Data Standards 138
2.5 Geographic Data Streams 139

3. The Geospatial Information Database Portal System 139
3.1 GIDB Data Sources 139
3.2 GIDB Internals 140
3.3 GIDB Access Methods 142
3.4 GIDB Thematic Layer Server 144

4. Example Scenarios 147
4.1 Serving Moving Objects 147
4.2 Serving Meteorological and Oceanographic Data 149

Acknowledgements 150
References 150

Streaming Data Dissemination using Peer-Peer Systems 153
Shetal Shah, and Krithi Ramamritham

1.
2.

3.
4.

5.

Introduction
Information-based Peer-Peer systems
2.1 Summary of Issues in Information-Based Peer-Peer Systems
2.2 Some Existing Peer-Peer Systems
2.3 Napster
2.4 Gnutella
2.5 Gia
2.6 Semantic Overlay Networks
2.7 Distributed Hash Tables
Multimedia Streaming Using Peer-Peer Systems
Peer-Peer Systems for Dynamic Data Dissemination
4.1 Overview of Data Dissemination Techniques
4.2 Coherence Requirement
4.3 A Peer-Peer Repository Framework
Conclusions

References

153
154
154
156
157
157
157
158
158
160
161
162
163
164
166
167

Index 169

List of Figures

2.1 The symmetric hash join operator for memory-fitting finite
streaming sources. 19

2.2 A breakdown of the effects taking place for the evaluation of
R Np S during time-unit t. 19

2.3 A traditional binary join execution tree. 22
2.4 A multiple input join operator. 22
2.5 An execution plan in the presence of queues; q$ denotes a

queue for stream S. 25
2.6 Progress chart used in Chain scheduling. 25
2.7 Example utility functions; the rc-axis is the percentage of

dropped tuples, while the y-acis is the achieved utility. 26
2.8 A distributed query execution tree over four participating sites. 29
2.9 The decision process for query scrambling; the initiation of

the scrambling phases is denoted by 'PI ' for the first one and
'P2' for the second one. 29

2.10 Combination of an Eddy and four Stems in a three-way join
query; solid lines indicate tuple routes, while dashed lines
indicate Stem accesses used for evaluation. 31

3.1 Possible query tree for the environment sensor query. 44
3.2 Synopsis-based stream queiy processing architecture. 52
4.1 A fragment XML document. 64
4.2 Query model used in this chapter. 64
4.3 Using prefix sharing to represent path queries. 66
4.4 Y-Filter algorithm. 61
4.5 Compact solution representation. 68
4.6 Algorithm Index-Filter. 71
4.7 Possible scenarios in the execution of Index-Filter. 73
4.8 Materializing the positional representation of XML nodes. 74
5.1 CAPE System Architecture. 86
5.2 Heterogeneous-grained Adaptation Schema. 87

STREAM DATA MANAGEMENT

5.3 Example Query in Online Auction System. 89
5.4 Dropping Tuples Based on Constraints. 90
5.5 Adaptive Component-Based Join Execution Logic. 92
5.6 Architecture of ASSA Scheduler. 95
5.7 A Binary Join Tree and A Multi-way Join Operator. 100
5.8 Two Exchangeable Boxes. 102
5.9 Distribution Manager Architecture. 105
5.10 Distribution Table. 106
6.1 Finite State Machine for Sample Query. 125
7.1 Vector Features for Nations in North America. 134
7.2 Shaded Relief for North America. 135
7.3 Combined View From Figures 7.1 and 7.2. 135
7.4 GIDB Data Source Architecture. 141
7.5 Detailed View of GIDB Data Source Architecture. 143
7.6 GIDB Client Access Methods. 145
7.7 Diagram for First Scenario. 148
8.1 The Problem of Maintaining Coherence. 164
8.2 The Cooperative Repository Architecture. 165

List of Tables

2.1 Notation used in the extraction of cost expressions. 17
3.1 Non-trivial pass behaviors for blocking operators, based on

punctuations that have arrived from the input(s). 42
3.2 Non-trivial propagation behaviors for query operators, based

on punctuations that have arrived from the input(s). 42
3.3 Non-trivial keep behaviors for stateful query operators, based

on punctuations that have arrived from the input(s). 43
3.4 Punctuation patterns. 43
5.1 Example Event-Listener Registry. 93
5.2 An example QoS specification. 96
7.1 Selected OGC Geographic Standards. 138
7.2 GIDB Client Software Packages. 144
7.3 ISO 19915 Standard Geographical Themes. 146
8.1 Overheads in Push and Pull. 163

Preface

In recent years, a new class of applications has emerged that requires man-
aging data streams, i.e., data composed of continuous, real-time sequence of
items. However, database management systems were originally developed to
support business applications. The data in such applications is changed as a
result of human-initiated transactions. Similarly data is queried as a result of
human-initiated queries. The database management system acts as a passive
repositoiy for the data, executing the queries and transactions when these are
submitted. However, this model of a database management system as a repos-
itory of relatively static data that is queried as a result of human interaction,
does not meet the challenges posed by streaming applications.

A data stream is a possibly unbounded sequence of data items. Streaming
applications have gained prominence due to both technical and business rea-
sons. Technologically data is now available from a wide variety of monitoring
devices, including sensors that are extremely cheap. Data from such devices
is potentially unbounded and needs to be processed in real-time. Additionally
businesses and Federal agencies now increasingly want to perform analysis on
data much sooner than is possible with the current model of storing data in
a data warehouse and performing the analysis off-line. Application domains
requiring data stream management include military, homeland security, sensor
networks, financial applications, network management, web site performance
tracking, real-time credit card fraud detection, etc.

Streaming applications pose new and interesting challenges for data man-
agement systems. Such application domains require queries to be evaluated
continuously as opposed to the one time evaluation of a query for traditional
applications. Streaming data sets grow continuously and queries must be eval-
uated on such unbounded data sets. The monitoring aspect of many streaming
applications requires support for reactive capabilities in real-time from data
management systems. These, as well as other challenges, require a major
rethink of almost all aspects of traditional database management systems to
support streaming applications. Consequently, stream data management has
been a very active area of research over the past few years.

xiv STREAM DATA MANAGEMENT

The goal of this edited manuscript is to gather a coherent body of work span-
ning various aspects of stream data management. The manuscript comprises
eight invited chapters by researchers active in stream data management. The
collected chapters provide exposition of algorithms, languages, as well as sys-
tems proposed and implemented for managing streaming data. We expect this
book will appeal to researchers already involved in stream data management,
as well as to those starting out in this exciting and growing area.

Chapter 1

INTRODUCTION TO STREAM DATA
MANAGEMENT

Nauman A. Chaudhry
Department of Computer Science, University of New Orleans
2000 Lakeshore Drive, New Orleans, LA 70148
nauman@cs.uno.edu

Abstract In recent years, a new class of applications has emerged that requires managing
data streams, i.e., data composed of continuous, real-time sequence of items.
This chapter introduces issues and solutions in managing stream data. Some
typical applications requiring support for streaming data are described and the
challenges for data management systems in supporting these requirements are
identified. This is followed by a description of solutions aimed at providing
the required functionality. The chapter concludes with a tour of the rest of the
chapters in the book.

Keywords: stream data management, stream query languages, streaming operators, stream
data management systems.

1. Why Stream Data Management?
Database management systems (DBMSs) were originally developed to sup-

port business applications. The data in such applications is changed as a result
of human-initiated transactions. Similarly the data is queried as a result of
human-initiated queries. The DBMS acts as a passive repository for the data
executing the queries and transactions when these are submitted. But such
traditional DBMSs are inadequate to meet the requirements of a new class
of applications that require evaluating persistent long-running queries against
continuous, real-time stream of data items.

2 STREAM DATA MANAGEMENT

1.1 Streaming Applications
A data stream is a possibly unbounded sequence of tuples. At a high level,

we can distinguish between two types of data streams, transactional and mea-
surement [Koudas and Srivastava, 2003].

Transactional Data Streams: Transactional data streams are logs of inter-
action between entities. Example application domains with such data include:

• In many large web sites, the interaction of users with the web site is logged
and these logs are monitored for applications such as performance moni-
toring, personalization. The information on this interaction continuously
gets appended to the log in the form of new log entries.

• Vendors of credit card monitor purchases by their credit card holders to
detect anomalies that indicate possible fraudulent use of a credit card
issued by them. Log of credit card transactions forms a continuous data
stream of transactional data.

Measurement Data Streams: These types of data streams are produced
as a result of monitoring the state of entities of interest. Example application
domains include:

• With sensors becoming cheaper, a whole area of applications is emerging
where sensors distributed in the real world measure the state of some
entities and generate streams of data from the measured values. E.g., such
sensors may be monitoring soldiers in battlefield, or traffic on highways,
or temperature at weather stations.

• Large-scale communication networks require continuous monitoring for
many tasks, such as locating bottlenecks, or diagnosing attacks on the
network. The data monitored consists of the packet header information
across a set of network routers. Thus this data can be viewed as a data
stream.

The typical queries that such application domains issue are long-running,
standing and persistent. If the application has registered a query, the data
management systems should continually evaluate the query over a long period
of time. This evaluation is repeated at some defined interval.

EXAMPLE 1.1 Let us consider a concrete example domain, namely road traffic
monitoring [Stream Query Repository; Arasu et al, 2004].

Consider a scenario where sensor embedded along expressways report on
current traffic on the road. The data being reported by the sensors forms a
continuous stream giving:

• Identifier of a car as well as its speed.

Introduction to Stream Data Management 3

• The id of the expressway and the segment and lane of the expressway
on which the car is traveling, as well the direction in which the car is
traveling.

Various queries would be evaluated over this data.

a To manage the flow of traffic, a query would compute the average speed
of cars over a segment. If the speed drops below a threshold, commuters
about to travel on that segment can be notified to take alternative routes.

b Again, based on average speed of vehicles over a segment, the application
might alert operators to possible accidents that are causing a slow down
on that segment.

c On toll roads, the data stream is used to automatically deduct toll from the
account of those vehicle owners that have tags recognized by the sensors.

d In advanced traffic management a goal is to manage congestion by varying
the toll rate. To achieve this goal, the application might deduct toll as a
function of average speed on the expressway.

L2 Traditional Database Management Systems and
Streaming Applications

Let us look at how the capabilities of traditional DBMSs match up to the
functional requirements of streaming applications, and in particular, the road
traffic management application described in the previous section.

• One-time vs. continuous queries: Applications of traditional DBMSs
issue one-time queries, i.e., after issuance a query is evaluated once and
the result at that point in time is returned to the user. As opposed to
this, streaming applications require that once a query is registered then it
should be continuously evaluated until it is deregistered. E.g., the road
traffic management application requires that average speed of cars in the
system should be continually evaluated based on new values reported by
the sensors.

• Notion of time: Data in traditional applications does not necessarily have
a notion of time. An update of an attribute overwrites the previous value
of the attribute. In data streams on the other hand data items represent a
sequence of values for the same entity. The queries over the streaming
data also extend over a history of values. E.g., the traffic management
application might require that the average speed of cars be computed over
the last 5 minutes.

4 STREAM DATA MANAGEMENT

• Unbounded Data Sets: Queries in traditional DBMSs are evaluated
against data that is finite and does not change while the queries are being
executed. Perchance the data does change during query execution, the
DBMSs implement mechanisms (e.g., cursor stability) so that the result of
the query execution is correct with respect to a specific instance of time.
In contrast to this, the datasets for streaming queries are continuously
growing and queries must be evaluated over such unbounded data sets.

• Unreliable Data: Traditional DBMSs deal with data that are assumed
to be accurate. However, for streaming applications, the DBMS must be
capable of dealing with unreliable data. The causes of such unreliability
may be sensors that have failed or delays in network that cause the data to
be reported out-of-order. In certain domains, such as weather monitoring,
even the data reported in correct sequence may have an associated degree
of accuracy determined by the accuracy of the sensor reporting the value.

• Reactive capability: Traditional DBMS applications are mostly passive.
The human initiates a transaction and the DBMS executes the transac-
tion and returns the results to the human. A lot of streaming applications
though have a monitoring nature, i.e., the application needs to react au-
tomatically when certain conditions hold over the data. E.g., if traffic on
a segment slows down below a threshold, drivers of cars about to travel
on that segment need to be automatically informed of alternative routes.
This reactive capability shouldn't require human intervention. This re-
quirement has led some researchers to describe the model for streaming
applications as DBMS-Active, Human Passive in contrast with the tradi-
tional Human-Active, DBMS Passive model [Carney et al , 2002].

1.3 Towards Stream Data Management Systems
Database applications that exhibit subsets of requirements of streaming ap-

plications have existed for a long time. For example, the need for reactive
capability has been recognized for almost two decades and research on active
database systems was undertaken towards fulfilling that need [Widom and Ceri,
1996]. Similarly temporal database systems explicitly model the temporal as-
pect of data [Jensen and Snodgrass, 1999]. However, recent trends driven both
by applications and technology have brought to prominence streaming appli-
cations that require a combination of the afore-mentioned requirements along
with high levels of scalability.

Technologically availability of cheap sensors implies that pretty soon practi-
cally any object of interest can be tracked and thus a whole new class of moni-
toring applications emerges. Along the application dimension, performing very
sophisticated analysis in near real-time is seen as an important business need,

Introduction to Stream Data Management 5

as opposed to the traditional approach of carrying out such analysis off-line on
data imported into data warehouses [Koudas and Srivastava, 2003].

The challenges posed by streaming applications impose certain architectural
and functional requirements on stream data management systems (or stream
systems for short). Some of the important high-level requirements are described
below:

• The data model must include the notion of time, while the query mech-
anism should support definition of continuous queries over such data.
Further discussion of issues related to data model and query languages
appears in Section 2.

• Given the unbounded nature of streaming data and the fact that the data
might be unreliable in certain case, a stream system must be capable of
computing answers based on incomplete or unreliable data.

• An implication of the above requirement is that the stream system may not
use blocking operators that process the entire stream before producing
an answer. A trade-off has to be made between non-blocking opera-
tors capable of computing approximate answers and blocking operators
computing exact answers.

• Since the queries are long-standing, the stream system should be capable
of coping with variations in conditions. This implies that query execution
plans need to be adaptive and dynamic instead of traditional static plans.

• Clearly stream systems need to have reactive capability. The challenge
here is to build reactive capability that scales to possibly thousands of
triggers as opposed to the current systems that don't scale beyond a limited
number of triggers.

• In many streaming applications, allied to this need of reactive capability
is the requirement of providing this capability in (near) real-time. This
requires that a stream system intelligently manages resources and can
provide Quality of Service (QoS) guarantees.

» A large number of streaming applications are inherently distributed in
nature. E.g., sensors for traffic monitoring would be distributed over a
large area. This distribution makes bandwidth considerations important
in query processing. Furthermore, sensors may have limited batteiy life,
so query processing must make efficient use of batteiy power.

1.4 Outline of the Rest of the Chapter
Having introduced important characteristics of streaming applications and

the challenges posed on data management systems by these applications, in

6 STREAM DATA MANAGEMENT

the following sections we give an overview of solutions aimed at overcoming
these challenges1. In Section 2, we discuss issues and solutions related to
data model and query languages. Section 3 includes description of work in
implementing query operators. A discussion of various projects related to
stream data management appears in Section 4, while Section 5 gives a brief
tour of the rest of the book.

2. Stream Data Models and Query Languages
A common, though not the only, approach in stream data models is to model

each item in a data stream as a relational tuple with a timestamp or sequence
number and developing a declarative SQL-like language for querying data
streams [Arasu et al., 2003; Chandrasekaran et al., 2003; Lerner and Shasha,
2003].

2.1 Timestamps
An important issue in the data model is defining timestamps for items in the

data stream. We can differentiate between different types of timestamps [Bab-
cock et al., 2002].

• Implicit timestamp is added to an arriving tuple by the stream manage-
ment system. This may simply be a sequence number that imposes a total
order on the tuples in the stream.

• Explicit timestamp is a property of the stream data item itself. Typically
streams in which tuples correspond to real-world events will have an
explicit timestamp.

An additional issue is assigning an appropriate timestamp to a tuple output
by a binary operator, e.g., a join. For streams with implicit timestamps one
possibility is that the produced tuple is also assigned an implicit timestamp
based on the time it was produced. Another approach applicable to either
implicit or explicit timestamps is that the query includes the user's specification
of the timestamp to assign to the new tuple.

2.2 Windows
For unbounded data streams many queries are interested in a subset or part

of the complete stream. This requires support for specifying the range of tuples
over which the query result should be computed via windows. Window spec-
ification in data stream is an extension of the SQL-99's notion of expressing
physical or logical windows on relations.

EXAMPLE 1.2 Consider a traffic management application where car locations
are being reported via a data stream CarLocStream [Stream Query Repository].

Introduction to Stream Data Management 1

The tuples in this stream have attributes that specify the id of the car, its speed,
the expressway, the direction, lane and segment on which the car is traveling, in
addition to the (implicit or more likely explicit) timestamp attribute. A query
to get the average speed of the cars over the last 5 minutes would be expressed
as:

SELECT exp_way, d i r , seg, AVG(speed)
FROM CarSegStr [RANGE 5 MINUTES]
GROUP BY exp_way, d i r , seg

In Examplel .2, RANGE 5 MINUTES defines a window of 5 minutes implying
that the query results should be computed over all tuples received in the previous
5 minutes. This is an example of a time-based (or physical) window. An
alternative specification is a tuple-based (or logical) window where the size of
the window is expressed in terms of number of tuples.

Choices also exist in defining the scope of the window as new data items
arrive [Gehrke et al., 2001]. In sliding windows the width of the window
remains fixed but both the endpoints move to replace old items with new items.
The query in Examplel .2 uses a sliding window to evaluate the query over the
tuples that have arrived in the last 5 minutes and replaces old tuples with new
ones.

In landmark windows one endpoint remains fixed while the other endpoint
moves. In the traffic monitoring application, a query computing the average
speed since a particular accident was reported would use a landmark window.

2.3 Proposed Stream Query Languages
Most stream processing systems have proposed and developed declarative

query languages by using SQL as a starting point and adding constructs for
queiying streams. These constructs provide specification of:

• Size and scope of windows,

• Referencing both streams and relations in the same query and possibly
converting between these two representations,

• The frequency and count of query execution.

The SQL-like query in the Example 1.2 in Section 2.2 is adapted from a
repository of example stream queries maintained in the Stream Query Repos-
itory project. The query is expressed in CQL (Continuous Query Language)
developed as part of Stanford's STREAM system [Arasu et al., 2003]. Other ex-
amples of SQL-like languages include StreaQuel [Chandrasekaran et al., 2003],
GSQL [Johnson et al., 2003], AQuery [Lerner and Shasha, 2003]. Chapter 6
of this book contains a detailed description of ESL-TS, a powerful SQL-like
language developed for stream querying.

8 STREAM DATA MANAGEMENT

A different approach for query specification is taken in the Aurora sys-
tem [Carney et al., 2002]. Instead of extending SQL, a graphical interface
is provided to the user to specify queries by defining the data flow through the
system. Using the graphical interface an application administrator can specify
queries by placing boxes, that represent different operators, at specific points
on various streams as they flow through the Aurora system.

3, Implementing Stream Query Operators
3.1 Query Operators and Optimization

To support querying over streams, suitable streaming versions need to be
created for relational operators. Stateless operators, i.e., operators that do not
need to maintain internal state, can simply be used as is in querying streams
[Golab and Ozsu, 2003]. Examples of stateless operators are the selection op-
erator and the projection operator that does not eliminate duplicates. Adapting
stateful operators, i.e., operators that need to maintain internal state, to stream
querying is though a much more involved tasks. Examples of stateful operators
are join and aggregate functions.

Streaming environments also pose certain challenges on the techniques used
to implement the operators and to execute the queries. The need for non-
blocking operators and adaptive query plans has been mentioned before. To
provide scalability, operator execution may be shared between different concur-
rent queries. This task can leverage work in traditional DBMS for optimizing
multiple queries [Sellis, 1988]. Additionally, the need for real-time capability
implies that making more than one pass over the data might be unfeasible, so
algorithms may be restricted to making a single pass over the data.

For a detailed discussion of query optimization for streaming systems see
Chapter 2 of the book, while for details of techniques to overcome the challenge
of non-terminating data streams see Chapter 3.

3.2 Performance Measurement
With the myriad efforts in implementing stream data management systems,

an important question is what metrics can be used to evaluate the systems.
Possible metrics for comparing the functionality and performance of stream
systems include:

• Response time: How long does it take for the system to produce output
tuples?

• Accuracy: In case the system gets overloaded and resources are insuffi-
cient to cope with the stream arrival rate, the stream system may resort
to approximate answers. How accurate the stream system is for a given
load of data arrival and queries?

Introduction to Stream Data Management 9

• Scalability: How much resources are needed by the stream system to
process a given load with a defined response time and accuary?

Quality of Serivice (QoS) is another possible metric to measure performance.
The Aurora system includes a QoS monitor to detect overload and poor system
performance [Carney et al., 2002]. QoS is defined as a function of various
attributes, such as response time and accuracy.

An important work in the area of performance measurement of stream sys-
tems is the Linear Road Benchmark [Arasu et al, 2004]. This benchmark
simulates traffic on a highway system that uses "variable tolls" and includes:

• A set of continuous queries that monitor data streams and historical
queries that query previously streamed data.

• Requirements on high-volume streaming data as well as historical data
that must be maintained.

• Requirements on response and accuracy of real-time and historical queries.

4. Prototype Stream Data Management Systems
A number of stream systems have been and are being developed in academia

as well as industry to meet the challenges of managing stream data. Below we
give an overview of some of the prominent systems:

• Aurora [Carney et al., 2002]: Aurora is a data flow oriented system with
a set of operators that can be used via a graphical user interface. A user
specifies queries by arranging boxes, representing operators, and arrows,
representing data flow among the operators. In essence thus the user
actually specifies query plans. The Aurora system optimizes the flow of
data in the system by real-time scheduling of the operators.

• CAPE: See Chapter 5 for details of this system.

• COUGAR [Demers et al., 2003]: COUGAR system has been developed
to provide data management for sensor data. Instead of tuples, the data
is modeled via ADTs (abstract data types). Query specification and exe-
cution utilize functions defined on- the ADT.

• Gigascope [Johnson et al., 2003]: Gigascope is a specialized stream
system built at AT&T for network applications. The system provides a
declarative query language called GSQL is used.

• Hancock [Cortes et al., 2000]: The Hancock system is also built at AT&T.
This system provides a C-based procedural language for querying trans-
actional data streams. The target application is tracking calling patterns
of around 100 million callers and raising real-time fraud alerts.

10 STREAM DATA MANAGEMENT

• NiagaraCQ [Chen et al., 2000]: NiagaraCQ is is a system for continuous
query processing over dynamic data sets on the web. The data model and
the query language are based on XML and XML-QL rather than relations
and SQL.

• StatStream [Zhu and Shasha, 2002]: StatStream system is geared towards
computing online statistics over data streams. The system is capable of
computing statistcs over single streams, as well as correlations among
streams.

• STREAM [Stream 2003]: STREAM system is a stream data manager
with a SQL-like declarative query language called CQL. The system
intelligently manages resources and is capable of dynamic approximation
of results based on load and available resources.

• TelegraphCQ [Chandrasekaran et al., 2003]: TelegraphCQ is a system to
continuously process queries over data streams. TelegraphCQ includes
highly adaptive query optimization techniques for evaluating multiple
queries over data streams.

• Tapestry [Terry et .al, 1992]: Though not a complete streaming sys-
tem, this early work at Xerox PARC introduced the notion of continuous
queries and implemented extensions to SQL to specify and execute such
queries. The target application for these continuous queries was filtering
email and news messages.

5. Tour of the Book
As described earlier in this chapter, query execution and optimization over

streaming data requires fundamental changes to approaches used in traditional
database systems. In Chapter 2, Viglas explores this issue in detail and presents
static as well dynamic approaches to stream query optimization.

The non-terminating and high volume nature of many data steams presents
major challenge for processing queries. In Chapter 3, Maier, et. al., describe
techniques, including filters, punctuations, windowing and synopses, that are
being developed to address the challenge of processing queries over unbounded
data streams.

Discussion in the preceding sections has been on streaming data modeled
as tuples. However, as Bruno, et. al., describe in Chapter 4, issues in stream-
ing data need to be addressed for XML data as well. When XML is used in
web services and for data dissemination in publish/subscribe systems, XML
data collections are no longer static. Instead XML documents arrive continu-
ously thus forming a stream of documents. The authors present algorithms for
evaluating multiple XML queries against such a stream of XML documents.

Introduction to Stream Data Management 11

In Chapter 5, Rundensteiner, et. al., describe the stream processing system
CAPE (for Constraint-Aware Adaptive Stream Processing Engine). Given the
dynamic nature of streaming data and environments, the ability to adapt is very
important for streaming data management. CAPE adopts a novel architecture
with highly adaptive services at all levels of query processing.

As discussed in Section 2, supporting continuous queries on streaming data
requires appropriate query languages. Such query languages must have ade-
quate expressive power and must be suitable for use by query optimizer. Bai,
et. al., describe the Expressive Stream Language for Time Series (ESL-TS) in
Chapter 6. To support querying over streaming data, ESL-TS includes SQL-
like constructs to specify input data stream and patterns over such streams. The
chapter also describes optimization techniques developed for ESL-TS.

A system that provides access to several types of geographical data, includ-
ing stream data, is described in Chapter 7 by Sample, et. al.. This portal
system, called Geospatial Information Database (GIDB) has been developed at
Naval Research Labs to link together several hundred geographical information
databases. The types of data servers linked by the portal range from web pages
and geographic data files accessed via file transfer, to database management
systems, geographical information systems and streaming data.

The book concludes with Chapter 8, in which Shah and Ramamritham de-
scribe architectures for managing streaming data in peer-to-peer systems.

Notes
1. Other surveys of stream managment systems can be found in [Koudas and Srivastava, 2003; Golab

and Ozsu, 2003; Babcock et al., 2002]. Description of some stream management systems can also be found
in a special issue of IEEE Data Engineering Bulletin devoted to stream data management[IEEE Bulletin,
2003]

Acknowledgments
The author was supported in part by Louisiana Board of Regents and NASA

through Louisiana Space Consortium contract NAS A/LEQSF(2004)-DART-11.

References
A. Arasu, S. Babu, and J. Widom (2003). The CQL continuous query lan-

guage: semantic foundations and query execution. Stanford University TR No.
2003-67.

A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. Maskey, E. Ryvkina, M.
Stonebraker and R. Tibbetts (2004). Linear Road: A Benchmark for Stream
Data Management Systems. In Proceedings ofVLDB Conference.

B. Babcock, S. Babu, M. Datar, R. Motawani, and J. Widom (2002). Models
and issues in data stream systems. In Proceedings of PODS Conference.

12 STREAM DATA MANAGEMENT

D. Carney, U. Cetintemel, M. Cherniack, C. Convey, L. Christian, S. Lee, G.
Seidman, M. Stonebraker, Michael, N. Tatbul, and S. Zdonik (2002). Monitor-
ing Streams - A New Class of Data Management Applications. In Proceedings
ofVLDB Conference, pages 215-226.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin, J. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, M. Shah (2003).
TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In
Conference on Innovative Data Systems.

J. Chen, D. DeWitt, F. Tian, Y. Wang (2000). NiagaraCQ: A Scalable Con-
tinuous Query System for Internet Databases. In Proceedings of SIGMOD
Conference.

C. Cortes, K. Fisher, D. Pregibon, A. Rogers (2000). Hancock: a Language
for Extracting Signatures from Data Streams. In Proceedings of Conference on
Knowledge Discovery and Data Mining.

A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and Y. Yao (2003). The
Cougar Project: A Work-in-Progress Report. In Sigmod Record, Volume 34,
Number 4, December 2003.

J. Gehrke, F. Korn, and D. Srivastava (2001). On Computing Correlated
Aggregates Over Continual Data Streams. In Proceedings of SIGMOD Con-
ference.

L. Golab and M. Ozsu (2003). Issues in data stream management. ACM
SIGMOD Record, 32(2):5-14, 2003.

IEEE Data Engineering Bulletin, Special Issue on Data Stream Processing.
Vol. 26 No. 1, March 2003.

C. Jensen and R. Snodgrass (1999). Temporal Data Management. In IEEE
Transactions on Knowledge and Data Engineering. 11(1).

T. Johnson, C. Cranor, O. Spatscheck, and V Shkapenyuk (2003). Gigas-
cope: A stream database for network applications. In Proceedings of ACM
SIGMOD Conference, pages 647-651.

N. Koudas and D. Srivastava (2003). Data stream query processing: a tuto-
rial. In Proceedings of VLDB Conference.

A. Lerner and D. Shasha (2003). AQuery: Query Language for Ordered
Data, Optimization Techniques, and Experiments. In Proceedings of VLDB
Conference.

T. Sellis (1988). Multiple-Query Optimization. In ACM TODS. 13(1): 23-
52.

Stream Query Repository, Stanford University,
http ://www-db. Stanford. edu/stream/sqr/

The STREAM Group, 2003. STREAM: The Stanford Stream Data Manager.
In IEEE Data Engineering Bulletin, Vol. 26 No. 1, March 2003.

Introduction to Stream Data Management 13

D. Terry, D. Goldberg, D. Nichols, and B. Oki (1992). Continuous Queries
over Append-Only Databases. In Proceedings ofACMSIGMOD Conference,
pages 321-330.

Jennifer Widom, Stefano Ceri (1996). Active Database Systems: Triggers
and Rules For Advanced Database Processing. Morgan Kaufmann.

Y. Zhu and D. Shasha (2002) StatStream: Statistical Monitoring of Thou-
sands of Data Streams in Real Time. In Proceedings ofVLDB Conference.

Chapter 2

QUERY EXECUTION AND OPTIMIZATION

Stratis D. Viglas
School of Informatics
University of Edinburgh, UK
sviglas@inf.ed.ac.uk

Abstract Query execution and optimization for streaming data revisits almost all aspects
of query execution and optimization over traditional, disk-bound database sys-
tems. The reason is that two fundamental assumptions of disk-bound systems
are dropped: (i) the data resides on disk, and (ii) the data is finite. As such,
new evaluation algorithms and new optimization metrics need to be devised. The
approaches can be broadly classified into two categories. First, there are static ap-
proaches that follow the traditional optimize-then-execute paradigm by assuming
that optimization-time assumptions will continue to hold during execution; the
environment is expected to be relatively static in that respect. Alternatively, there
are adaptive approaches that assume the environment is completely dynamic and
highly unpredictable. In this chapter we explore both approaches and present
novel query optimization and evaluation techniques for queries over streaming

Keywords: Query execution, query optimization, arrival rate, sliding windows, join process-
ing, operator scheduling, load shedding, query scrambling, adaptive evaluation.

1. Introduction
Stream data management has emerged in recent years as a research area

of database systems. The need to address stream data management is mainly
pragmatic since it is largely application-driven. A typical scenario in which
the need for stream data management arises is a network of a large number of
nodes (in the order of thousands or millions) where real-time processing over
the information transmitted by these nodes is necessary. There are numerous
real-world examples of such a scenario: sensors transmitting information about
the environment in which they are deployed is one; real-time analysis of pair-
ings between callers and dialed parties used by telecommunication companies

16 STREAM DATA MANAGEMENT

towards fraud detection is another; analysis of Internet Protocol (IP) network
traffic, or concurrent accesses by external users to the shared resources of a
cluster of Web servers are additional instances of such a scenario.

In this chapter we will focus on the practical need of processing streaming
data by employing traditional database operators. As we will see, this opens an
avenue of problems. Although the operations are well-known, in the sense that
they are the operations of relational algebra, the evaluation of these operations is
entirely different than in traditional database systems. The main reason is that by
moving from disk-based data to network-bound data, two of the fundamental
database assumptions are dropped: firstly, the data is no longer stored on a
local disk; as if this were not enough, a stream may in fact be infinite in length.
This means that the query processing paradigm employed by database systems
needs to be revisited and, in consequence, largely modified to address the new
assumptions.

The two dominant approaches to query execution and optimization for queries
over streaming information sources can be classified into two broad categories:

• The static approach: The premise is that the system is relatively static, i.e.,
the optimize-time environment is not significantly different than the run-
time environment. The latter is also expected to remain stable throughout
query execution. For instance, a query over a continuous feed of data
arriving at a constant rate is a good candidate for static optimization and
execution.

• The adaptive approach: In this scenario, the environment is completely
dynamic in the sense that the system cannot make any assumptions on the
nature of the inputs, the rates at which they arrive, the selectivity factors
of the predicates and so on. The only thing the system can do is adapt to
the changing environment.

The remaining of this chapter is organized as follows: execution of conjunc-
tive queries over streams is presented in Section 2, while static optimization
approaches are presented in Section 3. Adaptive query evaluation is the sub-
ject of Section 4. Finally, a summary of queiy execution and optimization in
streaming environments is given in Section 5.

2, Query Execution
We will concentrate on a powerful subset of relational algebra: conjunctive

queries, i.e., queries containing projections and conjunctions of selections and
joins. We assume that the system employs ^push-based execution model, i.e.,
the tuples of the incoming streams, as well as the operator output tuples, are
immediately pushed to subsequent operators for further processing. We will
be deriving generic cost expressions for each evaluation algorithm we present

Query Execution and Optimization 17

Table 2.1. Notation used in the extraction of cost expressions.

Term Explanation

fp The selectivity factor of predicate p
Xs The average incoming rate of stream 5 (Jff^e)
Ws The window size for stream 5

Us (S) Processing cost of storing a tuple from S into a memory structure
Mm (S) Processing cost of obtaining matches from S's memory structure
\ii (S) Processing cost of invalidating a tuple in S"s memory structure

in terms of computational cost and output rate. In subsequent sections we will
see how these cost expressions can be used to optimize queries.

One subtlety that needs to be addressed is the semantics of queries over
infinite sources. It is obvious that they have to be modified for certain operators.
For instance, a join over infinite sources means that infinite memory is needed to
buffer the inputs. We need to a mechanism to extract finite subsets of the inputs.
This mechanism is sliding windows: a sliding window can be expressed either
in terms of time (e.g., "in the last then seconds") or in terms of tuples (e.g.,
uin the last 1,000 tuples"). There is a clear way of moving from time-based to
tuple-based windows: Little's Theorem [Bertsekas and Gallager, 1991] states
that given a process with an average arrival rate of A and a time period T, then
the expected number of arrivals is equal to A • T. From the previous equation,
a time-based window of length T becomes a tuple-based window of size N.

We will be using the notation of Table 2.1; there, we are using the general
term memory structure to denote any structure that stores tuples. As we will see,
the chosen memory structure has an impact on performance when it comes to
join evaluation, but this discussion is deferred until a later time (see Section 2.2).

2.1 Projections and Selections
Selections and projections are unary operators, meaning they only affect the

properties of a single stream. We will address projections as a special case of
selections with a selectivity factor equal to one, i.e., all tuples are propagated to
the output. Assume that the number of tuples arriving from stream S in a time
unit is equal to A#. Of those tuples, only fp will qualify, so the output rate will
be equal to fp\s- On the other hand, if there are window constraints, the size
of the window needs to be scaled by the same factor, so for a window size equal
to W the output window will be equal to fpW. These results are summarized
in Equations 2.1 and 2.2, where \j and Wo denote an output rate and window
size respectively.

18 STREAM DATA MANAGEMENT

Xo = fp-Xs (2.1)
Wo = fP'Ws (2.2)

2.2 Join Evaluation
Join evaluation even on traditional, relational, disk-bound database systems

has received enormous attention. This is quite expected since a join is one of
the most commonly used database operations. It is no surprise that join evalu-
ation over network-bound streams is one of the most intensive query execution
research areas. The key issue that needs to be resolved is that inputs arrive
asynchronously at the stream processor. A secondary issue is that extra passes
over the data (if and when possible) are better to be avoided. The need for
disk-bound operation arises if the cardinality of the inputs, whether it is their
true cardinality in the case of finite streams, or their window cardinality in the
case of infinite streams, is too large for working memory. As a result, the stream
has to be spooled to disk for later processing. In such cases, extra mechanisms
need to be in place to facilitate disk-based operation.

2.2.1 Memory-fitting Sources and Sliding Windows. The first instance
of an asynchronous join evaluation algorithm, and the ancestor of all algorithms
that will be discussed, is the symmetric hash join (SH J) [Wilschut and Apers,
1991]. Consider the equi-join operation R ^R.a=s.b S, and assume both inputs
fit entirely in memory. Symmetric hash join proceeds symmetrically for both
inputs. Two hash tables are built, one for R and one for S. As tuples from R
(respectively, S) arrive, the sequence of operations, depicted in Figure 2.1, is
as follows: (i) they are hashed on the join key R.a (respectively, S.b) to obtain
the hash value for the tuple; (ii) they are used to probe the hash table for S
(respectively, R) for matches; and, finally (iii) they are stored in the hash table
for R (respectively, S);

SHJ was first employed for finite, memory-fitting sources. The difference
when it comes to infinite sources and sliding window predicates is that one
additional step needs to be taken: invalidating tuples that have expired from
the window [Kang et al., 2003; Golab and Ozsu, 2003]. Furthermore, it only
works for equi-join predicates, i.e., equality predicates between the streams.
An interesting observation is that not only hash tables, but also trees or straight-
forward lists can be used as memory structures for storing the tuples of the
streams. That way non-equi-join predicates can be evaluated using the same
principles. Furthermore, use of a different memory structure, and under certain
combinations of incoming rates, may considerably improve performance [Kang
et al., 2003; Golab and Ozsu, 2003]. Choosing the best structure for a partic-
ular join query is an optimization problem, tightly coupled with the predicate

Query Execution and Optimization 19

Hash
table for

R

store

Hash
table for

5

probe

Figure 2.1. The symmetric hash join op-
erator for memory-fitting finite streaming
sources.

Figure 2.2. A breakdown of the effects tak-
ing place for the evaluation of R Np S dur-
ing time-unit t.

being evaluated (for instance, a hash index cannot be used if the predicate is an
inequality one) the rates of the incoming streams and the various parameters
such as moving a tuple from one memory location to another or comparing two
values.

It is interesting to identify the number of output tuples generated due to
new arrivals from the input streams. Assume that R tx̂ S is evaluated and
Wji(t) and Ws(t) are the number of tuples read from R and S respectively
after time t. (We are slightly abusing the window notation for uniformity of the
expressions.) Given Little's theorem, the number of tuples in each stream up
until time t will be Wji(i) = A#£ for R and Ws(t) = Xgt for S. During time-
unit t there are XR new arrivals from R and Xs arrivals from S. The XR arrivals
will join with the Ws(i) tuples, producing fp\RWs(t) partial join results.
Correspondingly, the Xs arrivals will join with the WR(£) tuples, producing
IpXsWRit) partial join results. The result is not simply the sum of these two
quantities however, since, as shown in Figure 2.2, we have double-counted
the contribution of the partial join between the new arrivals during time-unit
t. That factor is equal to fpXjiXs and by subtracting it from the computation
we obtain that the number of outputs is fp • (XjiWs(t) + XsWf{(t) — XRXS).
The previous discussion assumes that we have ever increasing windows. The
other possibility is having constant-size, tuple-based windows. If we assume
that this is the case, there are two differences: (i) the window sizes are not time-
dependent, i.e., they are not a function of time so we can use the notation WR
and Ws, and (ii) for each new arrival from any stream, a tuple that is already
in the window expires, i.e., it compromises the window definition. As such,
we need not discount any double-counted tuples, so the expected number of
outputs becomes fp • (XRWS +

20 STREAM DATA MANAGEMENT

Finally, we also have to consider the effect of possible windows in the output
window of the join. This is rather straightforward as we can view the two
windows as two finite constant-sized sources so the expected output and, hence,
the output window size is simply the product of the selectivity factor of the join
predicate times the cross product of the two window sizes i.e., J^WRWT- The
complete set of results is summarized in Equations 2.3 and 2.4.

fp ' (^RWs(t)+ if there are no windows
\sWR(t) - XRXS) (2.3)

fp ' (A R W S + XSWR) if there are windows
(2.4)

One important result of sliding window join evaluation comes from the fol-
lowing observation: the evaluation of R tx^ S can be decomposed into two
independent components: Rx S, signifying the operations that need to be car-
ried out over stream R, and R K 5 , signifying S the operations that need to be
carried out over stream S; we call each of those components a join direction.
It is possible to use a different memory structure for each join direction. For
instance, a hash table can be used to store the tuples of R, while a B-tree can
be used to store the tuples of S. This lead to the introduction of asynchronous
operators [Kang et al., 2003].

Let us now derive computational cost expressions for the evaluation process.
Since the rates of the inputs are measured in tuples per unit time, we will present
per unit time [Kang et al., 2003] computational cost expressions. First of all,
the computational cost [IRMS is equal to the sum of the computational costs in
each join direction. Given the previous analysis of operations the per unit time
computational cost for i? x S will be equal to the sum of the following factors:
(i) the number of S arrivals per unit time multiplied by the cost of accessing i?'s
memory structure for matches; and (ii) the number of R, arrivals per unit time
multiplied by the cost of storing them in i?\s memory structure and invalidating
an equal number of tuples that have expired from the memory structure.

What seems counterintuitive, is that the computational cost for R, tuples is
dependent on the arrival rate of tuples from S. The explanation is the following:
what essentially "triggers" the evaluation over i?'s memory structure are arrivals
from S; this is the only measure we have of how many times the memory
structure for R is searched for matches satisfying the join predicate. The number
of storing and invalidation operations, however, is dependent on arrivals from
stream R, as expected. The entire computation for both join directions is
presented in Equations 2.5 to 2.7.

Query Execution and Optimization 21

(2.6)
(2.7)

2.2.2 Finite Sources and Disk-based Operation. The previous dis-
cussion addresses the issue of sources that fit in memory. But the question of
join evaluation over finite sources whose sizes exceed available memory still
remains. The first extension to SH J to address those issues came in the form
of an operator called XJoin [Urhan and Franklin, 2000]. Consider again the
equi-join R ^R.a-s.b S and assume that the system allocates an amount of
memory for i?'s hash table capable of storing MR tuples, while the amount of
memory allocated for S"s hash table is sufficient to store Ms tuples. If | • |
denotes the cardinality of a finite stream, MR < \R\ and Ms < \S\ hold, i.e.,
neither stream fits entirely in memoiy. In XJoin, each hash table is partitioned
in m partitions, i.e., partitions pf , . . . p^ for i? and partitions p[,... p^ for S.
A new incoming tuple is hashed twice; once to find the partition it belongs to,
and once to find its position in the partition. Join evaluation using the XJoin
operator, then, proceeds in three stages:

1 The streaming memory-to-memory phase: While the inputs are streaming
into the system, XJoin behaves just as SH J with one difference: as soon
as a partition becomes full it is flushed to disk. This phase continues until
either one of the inputs becomes blocked or both streams are fully read.

2 The blocked memory-to-disk phase: If one stream becomes blocked then
an on-disk partition from the other stream is fully read and used to probe
the corresponding in-memory partition for matches. Care needs to be
taken so that no duplicates are generated at this point, i.e., join results
that have been already generated during the first phase are not generated
again. This is achieved by checking additional conditions over the tuple
timestamps, as well as on the intervals at which on-disk partitions were
used for probing in-memory ones.

3 The clean-up disk-to-disk phase: After both streams are fully read, XJoin
reverts to the final clean-up phase. The behavior during this phase is
almost the same as in the second phase of the traditional hybrid hash
join [Shapiro, 1986]. The only difference is that again care is taken so
that no duplicate join results are generated.

A further extension to XJoin, came in the form of MJoin [Viglas et al.,
2003], that addressed the issue of multi-way join query evaluation. Consider
a scenario of a multi-way join query over m data streams Si, £ 2 , . . . , Sr

m- A

22 STREAM DATA MANAGEMENT

51 52 53 •• V i 5ro

Figure 2.3. A traditional binary join exe- Figure 2.4. A multiple input join operator,
cution tree.

typical evaluation plan employing binary join operators is shown in Figure 2.3.
There are two problems in this scenario: First, for each join in the execution tree
two hash tables will be built; one of these hash tables will be for a temporary
result (e.g., the result of 52 M 53). That poses additional processing and storage
burdens on the system. Furthermore, a more subtle problem is that the output
rate of the query is not only a function of the chosen evaluation algorithm, but
also a function of the shape (e.g., deep or bushy) of the execution tree. The
MJoin solves these problems by employing a single operator to evaluate the
query, as shown in Figure 2.4. The general evaluation algorithm is the same as
XJoin's, the only differences being that there are as many hash tables as there
are inputs and that not all hash tables will be probed for every arrival, as the
sequence of probes stops whenever a probe of a hash table finds no matches
(since in this case it cannot produce answer tuples). Each operator has its
own probing sequence and the sequence is organized in such a way so that the
most selective predicates are evaluated first and it is different for each input.
This ensures that the smallest number of temporary tuples is generated. The
computational cost expressions for MJoin are quite straightforward extensions
of those for binary joins. The main difference is that they need to be generalized
so that the probing of not one but m — 1 hash tables is taken into account.

Finally, we need to point out that MJoin is not a "panacea" for all multi-way
join queries; there are cases in which the processing required by the combined
input rates of the streams is such that a single MJoin operator is better off split
in a number of fewer input M Joins [Viglas et al., 2003]. Identifying those cases
presents an interesting optimization problem.

3. Static Optimization
Cost-based optimization has been traditionally employed as the query opti-

mization paradigm since the seminal work in System R [Selinger et al., 1979].
The shift when it comes to data stream systems as opposed to disk-bound

Query Execution and Optimization 23

database systems stems from the optimization metric. The cost metric used by
database systems has been cardinality, which lead to query optimization being
described as cardinality-based query optimization. This makes perfect sense
for disk-bound data: the dominant factor in determining the cost of a query
evaluation strategy is disk I/O and cardinality is a good approximation of how
much disk T/O is needed.

But cardinality is not the best cost metric for streams. If they are finite, but
remotely accessed, their cardinality may be unknown until they have been fully
read, which is of no use to query optimization. Even if cardinality is known
at optimization time, the data is not readily available when query execution
starts. Even worse, cardinality as a cost metric is not even applicable in the
case of unbounded streams. The obvious argument here is that the cost of any
alternative evaluation strategy, as estimated by a cardinality-based cost model,
for a query over infinite streams is infinite. Clearly, something different is
needed.

The three main optimization approaches proposed in the literature are rate-
based query optimization, optimization for resource consumption and optimiza-
tion for quality of service. We will present each approach in turn.

3.1 Rate-based Query Optimization
All the cost expressions we have so far presented make use of the rate of the

incoming streams. As such, the rate forms the basis of a new cost model, called
the rate-based cost model [Viglas and Naughton, 2002]. The idea behind the
rate-based cost model and rate-based query optimization is that it captures all
the important parameters of processing over streams: the number of tuples per
unit time the system is expected to process; the per unit time processing cost;
and the throughput of the query. It also provides the basis for the mechanism that
allows us to move from he realm of time-based windows to that of tuple-based
windows and vice versa.

There are more than one possibilities of what one can optimize for when using
a rate-based cost model. The best way to present them is by concentrating on the
throughput of any query Q, defined as p(Q) — -4§y, where X(Q) is the output
rate and ji(Q) is the total processing cost. The quantity -j^r is also referred
to as utilization. Given any query, there are a number of alternative evaluation
plans. If the overall objective is to maximize the throughput of the system,
we have two ways of doing so: either by choosing the evaluation plan that
maximizes the output rate of the query, or by choosing the plan that maximizes
utilization (i.e., minimizes processing).

In some cases, only achieving one of those objectives is enough. For instance,
in the case of sliding window queries, and in steady state, the expected number of
outputs will be the same regardless of the choice of plan [Ayad and Naughton,

24 STREAM DATA MANAGEMENT

2004]. The argument is quite simple with the following analogy: once the
window sizes are fixed, we have the same situation as in evaluating a query
over disk-based data: the output cardinality (and, hence, the rate) will be the
same regardless of the choice of plan. This is not the case, however, if the
sources are finite and if part of the processing is disk-based. The rate can then
drastically change over time as a function of which execution plan is chosen.

An interesting extension is what happens if the output rate of a query is time-
dependent. Consider the case of query Q and a set of m possible evaluation
plans for that query 7^, i = 1 , . . . , m. Assume that the time-dependent output
rate of each plan can be expressed as a function of time Xpi (t) (with obvious
semantics). The number of outputs produced by plan T\ will be another function
of time, which is shown in in Equation 2.8.

[XVi(t)dt (2.8)
o

Given the correlation between the number of outputs npi (t) produced by
time t by plan Vi and the estimated output rate of the plan Xp^t), shown in
Equation 2.8, it is now possible to optimize for two objectives. By fixing the
time variable to some constant tv, we can choose the plan that maximizes the
number of outputs produced in that time interval. Alternatively, by treating
time as a variable and fixing the number of output tuples to KQ, we can choose
the plan V% that minimizes the time needed to generate the specified number of
outputs.

This is the theoretical formulation of the problem. In practice, the general
optimization problem is reduced to a local optimization problem, using inte-
gral approximation techniques and heuristics. Two such reductions for each
of the optimization objectives [Viglas and Naughton, 2002] are: (i) local rate
maximization, in which the local output rates are maximized in hopes of max-
imizing the total output rate and, therefore, the number of tuples produced in
a given time period; (ii) local time minimization, in which the time needed to
reach partial result sizes is minimized in hopes of minimizing the time needed
to reach the complete result size.

3.2 Resource Allocation and Operator Scheduling
The previous framework of rate-based query optimization assumes that the

streams have a predictable arrival rate that can be characterized by an average
number of arrivals per unit time. Research in data networks, however, pos-
tulates that network traffic may exhibit periods of high activity (bursts) and
periods of lighter load. The effect this has on query evaluation is that during
periods of high activity there may appear backlogs of unprocessed tuples be-
tween operators of a static plan. These backlogs are usually stored in queues

Query Execution and Optimization 25

| 1

2.5. An execution plan in the pres-
ence of queues; qs denotes a queue for
stream S.

Figure 2.6. Progress chart used in Chain
scheduling.

between operators, as shown in Figure 2.5. The problem then becomes one of
scheduling: the execution system should schedule operators in a way that min-
imizes the length of those queues. In other words, what needs to be identified
is the optimal scheduling strategy so that the total memory requirements of a
query are minimized.

In doing so, we need a way to characterize memory requirements in terms
of queue sizes of the various operators in a query. We assume that a paged
memory approached is used, i.e., a page is the unit of memory allocation and
streams arrive in a paged fashion into the system. The memory requirements
are captured by & progress chart [Babcock et al , 2003], an example of which
is shown in Figure 2.6. The z-axis of the progress chart represents time, while
the ?y-axis represents the number of pages used by a query to store its tuples in
queues. The points (shown as circles) of the graph represent the operators of
the query with the following semantics: if there are m operators in the query,
there will be m -f-1 points in the graph. The 2th point represents an operator that
takes ti — U-i time units to process s^-i input pages, producing Si pages in the
output. The selectivity factor of the operator can therefore be defined as j ^ - .
In the end, there will be zero pages to process, so Sm will always be equal to
zero.

The progress of a page (i.e., a memory unit) through the system is captured
by ^progress line, which is the "jagged" solid line between points in Figure 2.6.
Pages are expected to move along this progress line. A new page p enters the
system at time to and has a size of SQ. After having been processed by operator
Oi it has received ti processor time and its size has been reduced to <%. The last
operator in the query plan always reduces the page size to zero, as the page no
longer needs to be buffered in a queue.

For the memory requirements of the plan to be minimized, we need to be
along the dashed line. The reason is that operators along this line reduce the

26 STREAM DATA MANAGEMENT

utility

Figure 2.7. Example utility functions; the a>axis is the percentage of dropped tuples, while the
y-'dcis is the achieved utility.

number of pages in the system the fastest. This dashed line is called the lower
envelope simulation of the progress chart. This observation gives rise to the
chain scheduling strategy [Babcock et al., 2003]: At any time instant, consider
all pages that are currently in the system. Of these, schedule for a single time
unit the page that lies on the segment with the steepest slope in its lower envelope
simulation. If there are multiple such pages, select the page which contains the
earliest arrival.

Chain scheduling is provably the optimal scheduling strategy in the presence
of knowledge of the selectivity factors and per-tuple (and therefore per-page)
processing costs. The cost expressions of the algorithms we have presented in
the previous sections allow us to estimate those costs. As for the selectivity fac-
tors, they can be periodically re-estimated by a simple sampling methodology.
After each re-estimation, the progress chart is recomputed and the operators are
rescheduled in accordance to the new progress chart.

3.3 Quality of Service and Load Shedding
One of the potential problems of evaluating queries over streaming sources

arises when, in order to cope with the combined input rates of the incoming
sources, the processing required by the evaluation plan so that it "keeps up"
with the incoming rates is more than what the CPU can devote. This is an
instance of an infeasible plan, i.e., a plan that saturates the CPU so that the
queues of unprocessed tuples that appear between operators grow without limit.

Since no execution schedule can minimize the length of the queues, the only
alternative is to "artificially" decrease the length of the queue by "dropping"
some of the tuples in it. This is called load shedding [Kang et al., 2003; Tatbul
etal., 2003; AyadandNaughton, 2004]. However, choosing where tuples should
be dropped from is not something to be performed blindly. This is performed
on a Quality of Service (QoS) basis with respect to a utility function. The
utility function is a concave function of the percentage of tuples dropped. More
specifically, if no tuples are dropped, the utility of the evaluation plan is one;
as the percentage of dropped tuples grows, the utility decreases until it reaches
zero. Examples of utility functions are shown in Figure 2.7.

Query Execution and Optimization 27

The entire problem is an optimization problem, which can be stated as fol-
lows: Consider a query Q, an available total processing capacity M, an eval-
uation plan V for that query and a concave utility function u(V). The total
processing required by the plan is fi(V) where /J>(V) > M, i.e., the plan is
infeasible. The objective is to identify an alternative plan V that performs load
shedding so that f.i(P) <M< fi{V) and u(P) - u(V') is minimized.

The conceptual solution to the problem is the introduction of drop-boxes in
the query plan. These can be thought of as operators inserted into the execution
plan between successive operators, or between an incoming stream and the first
operator to process it. The function of these operators is to selectively drop a
percentage of incoming tuples before they reach the subsequent operator.

Introducing drop-boxes in the execution plan leads to another subtle decision
that needs to be made. Not only do we need to determine how much load each
drop-box should shed, we also need to determine the location of these drop-
boxes in the query plan. The solution to both these problems makes use of
Loss/Gain ratio modeling [Tatbul et al., 2003]. A Loss/Gain ratio is the ratio
between the loss in utility incurred by the introduction of a drop-box, over the
gain in QoS. Each alternative drop-box location is associated with a Loss/Gain
ration. Once all drop locations are enumerated and their Loss/Gain ratios are
computed, they are sorted in Loss/Gain ratio ascending order. The system then
iterates over each location adding drop-boxes. After the addition of a drop box,
new Loss/Gain ratios are computed, since the introduction of a drop box may
affect them. The iteration stops once the optimization objective is met.

An important decision is how tuples are dropped once the drop-boxes are
in place. The simplest method is, of course, random dropping. That is, once
the percentage of tuples to be dropped is identified, these tuples are randomly
dropped from the input, so long as the dropped tuples percentage quota is
met. An alternative approach, and one that has been proven to work better
in practice, is semantic dropping. When employing semantic dropping, the
drop-box effectively becomes a selection operator evaluating a predicate on the
values of the incoming stream. The utility of each tuple is computed, based
on the tuple's values. The semantic predicate of the selection operator then
becomes one that drops the least useful tuples, propagating only those having
a higher utility [Tatbul et al., 2003].

One important aspect of load shedding is that it is independent of the schedul-
ing algorithm. The assumption is that load shedding "saves" processing cycles
by gracefully bringing the execution plan in the realm of feasible computa-
tion. Once the plan becomes feasible, the scheduler can go about doing its
usual business of scheduling the operators so that intermediate queue sizes are
minimized.

28 STREAM DATA MANAGEMENT

4. Adaptive Evaluation
The discussion on query execution and optimization so far revolves around

the idea that the execution environment is relatively static. As such, the assump-
tions made at optimization-time will hold at execution-time. In network-bound
data processing, however, it also makes sense to account for highly dynamic
and unpredictable environments. In those cases, the execution environment is
expected to drastically change over time due to reasons beyond the system's
control, such as bursty arrivals.

All these approaches are static in the sense that once the execution plan (or
operator) is set up, it does not change over time. An entirely different approach
is to use an adaptive framework. The key idea of adaptive systems is that they
are able to gradually re-organize the execution plan over time so that it is always
close to the optimal plan for the current state of the execution environment. In
the next sections we will refer to two adaptability ideas: Query Scrambling and
Eddies and Stems.

4.1 Query Scrambling
Query scrambling [Urhan et al., 1998] is a reactive approach to address the

unpredictability in the rates of the incoming streams. Optimization approaches
like rate-based optimization may choose a plan that is truly optimal if the op-
timization time assumption of an average incoming rate with little fluctuation
is true. Under bursty traffic, however, though the expected average may still
be valid, the exhibited performance may be quite different than the expected
one simply because of bigger fluctuations in the rate. In those cases, query
scrambling "steps in" and dynamically alters the plan so that these issues are
resolved. In the next section we will see how this is achieved.

Consider for instance the distributed execution plan of Figure 2.8, where a
five-way join query over four remote sites is presented. The problem if there
is no room for dynamic plan restructuring is that if one of the inputs exhibits
delays, then the whole plan will experience the same delay. This situation is
even worse for initial delays. Consider the scenario in which the network link
between Site 1 and Site 4 is down; this means that if the operators at Site 1 are
chosen to be executed first, then query execution cannot even be initialized as
there will be no arrivals at all from Site 1 to the result producing Site 4.

Query scrambling addresses situations like these are addressed by employing
a two-phase approach:

• First phase: Query rescheduling. The order in which operators are ex-
ecuted in the queiy plan is dynamically altered. In the example of Fig-
ure 2.8, ifthe network link between Site 1 and Site 4 is down, the operators
at sites other than Site 1 can execute and transmit results to Site 4 regard-
less of the network link between Site 1 and Site 4 being down. The query

Query Execution and Optimization 29

Query result

Figure 2.8. A distributed query execution
tree over four participating sites.

Figure 2.9. The decision process for query
scrambling; the initiation of the scrambling
phases is denoted by 'P I ' for the first one
and 'P2' for the second one.

plan does not change, but the system reschedules the evaluation order so
these operators are executed first.

• Second Phase: Operator synthesis. As the name suggests, new operators
are introduced in the query plan. For instance, a new join might be added
to the query plan with another join removed. This means that the query
plan is significantly different after operators are added or removed.

These two approaches are invoked in sequence, but iteratively by the system.
That is, the system first tries to address potential problems by iteratively employ-
ing queiy rescheduling. After no progress can be made using this approach, it
reverts to the more drastic approach of iteratively employing operator synthesis.
The processing flow during query scrambling is depicted in Figure 2.9.

4.2 Eddies and Stems
The idea behind an Eddy [Avnur and Hellerstein, 2000] is to reduce query

optimization to a routing problem. This is achieved by the very elegant idea of
not explicitly connecting query operators to form an execution plan; instead,
there is a central authority that undertakes the task of routing tuples to the
appropriate operator as they enter the system. Once a tuple has been processed
by all query operators, it is ready to exit the system as a result tuple. In this
representation, the central authority is called an Eddy.

On the other hand, a Stem [Madden et al., 2002] is an on-the-fly index built
on top of the incoming streams, depending on the query at hand (e.g., a Stem
might be a hash index or a B-tree). The query operators access the appropriate
index. It is possible for the system to build two Stems over the same stream.
For instance, given an input stream S, a hash index might be built on attribute
S.a and a B-tree index might be built on attribute S.b. The hash index can then

30 STREAM DATA MANAGEMENT

be used to evaluate an equi-join where S.a is the participating attribute and the
B-tree index can be used for a range selection over S.b. Moreover, indexes can
be shared among queries. Tn the previous example, any other query needing to
perform a range selection over S.b can use the B-tree index.

Finally, the system creates an instance of every operator in the query. The op-
erators communicate directly with the Eddy and may access one or more Stems
depending on the operation they evaluate. The operators are not connected in
any other sense, i.e., if there are operators O{ and Oj, they will never exchange
any tuples directly; all communication and information exchange will take place
through the Eddy. Each tuple is augmented with a query bitmap, which con-
tains as many bits as there are operators in the query. All bits are initialized to
zero and are set to one after the corresponding operator has processed the tuple.
After all bits have been set the tuple is output as a result tuple. The sequence
of processing steps for a tuple, from its entry into the system until its exit, can
therefore be summarized as follows:

1 On arrival to the Eddy, the tuple is augmented with the query bitmap (all
bits set to zero) and propagated to the appropriate Stem; it is then returned
to the Eddy.

2 On re-acceptance of a tuple, the Eddy decides which operator the tuple
should be sent to next. The operator accepts the tuple and processes it
by accessing the appropriate Stem(s). If the operator decides the tuple
should still be in the system, it sets the appropriate bit of the query bitmap,
and returns it to the Eddy. One example of a tuple being dropped out of
further processing is when it does not satisfy a selection predicate.

3 The previous step is repeated until all operators have processed the tuple
(i.e., all the bits in the query's bitmap are set).

Consider for example a three-way query with the following relational alge-
braic operators: <TSi.a3>v,Si NSi.ai=£2.a2 S2, Si ^Si.a3>Ss.a-s S3. The Use
of an Eddy and four Stems for the evaluation of the three-way join query is
presented in Figure 2.10.

Tuple Routing. The "heart" of an Eddy is the principle under which tuples
are routed from one operator to another. This is called the routing strategy of the
adaptive framework. The premise is that a good routing strategy will converge
to the optimal evaluation plan at all times.

Eddies use a variant of the lottery scheme tailored for the query processing
paradigm. In this scenario, "winning the lottery" means "accepting a tuple
for processing." The concept is that the probability of the Eddy routing a
tuple to an operator (and, therefore, the operator winning the lottery) is directly
proportional to the number of tickets the operator holds. The operator that

Query Execution and Optimization 31

Hash
table

A' * S2.a2

Hash
table

Stem2 Stem3

Figure 2.10. Combination of an Eddy and four Stems in a three-way join query; solid lines
indicate tuple routes, while dashed lines indicate Stem accesses used for evaluation.

wins the lottery at each iteration is the one that holds the greatest number of
tickets. Not all operators participate in every draw; only those that are eligible.
Eligibility can be determined by the bitmap of a tuple: the eligible operators
are those for which the corresponding bit in the tuple's query bitmap is not yet
set. Once a tuple is routed to an operator, the operator receives a ticket. If
it returns the tuple to the Eddy, it returns the ticket as well; if it does not, it
holds on to the ticket. Operators that drop tuples out of further processing hold
on to the greatest number of tickets. These are the most selective operators
and most of the tuples should be routed to them. If the selectivity factor of a
predicate increases over time the operator will slowly start returning the tickets
it is holding on to. In that way, the system will adapt to a different evaluation
plan.

5, Summary
Query execution and optimization over data streams revisits almost all as-

pects of query evaluation as these are known from traditional disk-bound database
systems. Data stream systems can be thought of as database systems after two
traditional assumptions have been dropped: (i) the data is disk-bound and stored
on a local disk, and (ii) the data is finite.

When dealing with query evaluation over data streams there are two main
approaches: static and adaptive. Systems adhering to the static approach em-
ploy the same paradigm as traditional systems in terms of query evaluation, in
the sense that they statically optimize a query to identify an optimal execution
plan, and then use that plan for the lifetime of the queiy. The challenge is
identifying the new cost metrics that are better suited for query evaluation over

32 STREAM DATA MANAGEMENT

streaming sources, as well as devising evaluation algorithms that perform better
over streams (with respect to the cost metrics).

Systems employing the adaptive approach treat the execution environment
as entirely unpredictable, in the sense that any assumption made when the query
is issued and statically optimized will fail during query evaluation. As such,
the system only reacts to problems that may arise during query execution. One
approach is to continuously restructure the execution plan This process is called
query scrambling. An alternative is not to employ an explicit execution plan,
but be completely adaptive by focussing only on the operators that need to be
evaluated without connecting them in a static plan. Adaptation is achieved by
having a central routing authority route tuples to operators. The best known
example of this approach is the combination of Eddies and Stems.

References
Avnur, Ron andHellerstein, Joseph M. (2000). Eddies: Continuously Adap-

tive Query Processing. In SIGMOD Conference.
Ayad, Ahmed andNaughton, Jeffrey F. (2004). Static Optimization of Con-

junctive Queries with Sliding Windows over Unbounded Streaming Information
Sources. In SIGMOD Conference.

Babcock, Brian, Babu, Shivnath, Datar, Mayur, andMotwani, Rajeev (2003).
Chain: Operator Scheduling for Memory Minimization in Data Stream Sys-
tems. In SIGMOD Conference.

Bertsekas, D. and Gallager, R. (1991). Data Networks. Prentice Hall.
Golab, Lukasz and Ozsu, M. Tamer (2003). Processing sliding window

multi-joins in continuous queries over data streams. In VLDB Conference.
Kang, Jaewoo, Naughton, Jeffrey R, and Viglas, Stratis D. (2003). Evalu-

ating Window Joins over Unbounded Streams. In Proceedings of the Interna-
tional Conference on Data Engineering (ICDE).

Madden, Sam, Shah, Mehul A., Hellerstein, Joseph M., and Raman, Vi-
jayshankar (2002). Continuously Adaptive Continuous Queries over Streams.
In SIGMOD Conference.

Selinger, Patricia G., Astrahan, Morton M., Chamberlin, Donald D., Lo-
rie, Raymond A., and Price, Thomas G. (1979). Access Path Selection in a
Relational Database Management System. In SIGMOD Conference.

Shapiro, Leonard D. (1986). Join Processing in Database Systems with
Large Main Memories. TODS, ll(3):239-264.

Tatbul, Nesime, Cetintemel, Ugur, Zdonik, Stanley B., Chemiack, Mitch,
and Stonebraker, Michael (2003). Load Shedding in a Data Stream Manager.
In VLDB Conference.

Urhan, Tolga and Franklin, Michael J. (2000). XJoin: AReactively-Scheduled
Pipelined Join Operator. IEEE Data Engineering Bulletin, 23(2):27-33.

Query Execution and Optimization 3 3

Urhan, Tolga, Franklin, Michael J., and Amsaleg, Laurent (1998). Cost-
Based Query Scrambling for Initial Delays. In SIGMOD Conference.

Viglas, Stratis D. andNaughton, Jeffrey F. (2002). Rate-Based Query Opti-
mization for Streaming Information Sources. In SIGMOD Conference.

Viglas, Stratis D., Naughton, Jeffrey F., and Burger, Josef (2003). Maxi-
mizing the Output Rate of Multi-Way Join Queries over Streaming Information
Sources. In VLDB Conference.

Wilschut, Annita N. and Apers, Peter M. G. (1991). Pipelining in Query
Execution. In Conference on Databases, Parallel Architectures and their Ap-
plications.

Chapter 3

FILTERING, PUNCTUATION, WINDOWS AND
SYNOPSES

David Maier,1 Peter A. Tucker,2 and Minos Garofalakis3

1OG1 School of Science & Engineering at OHSU
20000 NW Walker Road
Beaverton, OR 97006
maier@cse.ogi.edu

2 Whitworth College
300 WHawthorne Road
Spokane, WA 99251
ptucker@cse.ogi.edu

1 Bell Laboratories,
Lucent Technologies
Murray Hill, NJ 07974
minos@research.bell-labs.com

Abstract This chapter addresses some of the problems raised by the high-volume, non-
terminating nature of many data streams. We begin by outlining challenges
for query processing over such streams, such as outstripping CPU or memory
resources, operators that wait for the end of input and unbounded query state. We
then consider various techniques for meeting those challenges. Filtering attempts
to reduce stream volume in order to save on system resources. Punctuations
incorporate semantics on the structure of a stream into the stream itself, and can
help unblock query operators and reduce the state they must retain. Windowing
modifies a query so that processing takes place on finite subsets of full streams.
Synopses are compact, efficiently maintained summaries of data that can provide
approximate answers to particular queries.

Keywords: data stream processing, disordered data, stream filtering, stream punctuation,
stream synopses, window queries.

3 6 STREAM DATA MANAGEMENT

\. Introduction: Challenges for Processing Data Streams
The kinds of manipulations users would like to perform on data streams

are reminiscent of operations from database query processing, OLAP and data
mining: selections, aggregations, pattern-finding. Thus, one might hope that
data structures and algorithms developed for those areas could be carried over
for use in data stream processing systems. However, existing approaches may
be inadequate when confronted with the high-volume and unbounded nature of
some data streams, along with the desire for near-real time results for stream
operations.

The data rate for a stream might outstrip processing resources on a steady
or intermittent (bursty) basis. Thus extensive CPU processing or secondary
storage access for stream elements may be infeasible, at least for periods of
time. Nor can one rely on buffering extensive amounts of the stream input in
memory. For some applications, such as network monitoring, a few seconds of
input may exhaust main memory. Furthermore, while buffering might handle
bursty input, it does so at a cost of delaying results to users.

The potentially unbounded nature of data streams also creates problems for
existing database query operators, or for particular implementations of them.
Blocking operators, such as group-by, difference and sort, and blocking imple-
mentations, such as most join algorithms, cannot in general emit any output
until the end of one or more of the inputs is reached. Thus on a continuous
data stream, they will never produce any output. In the case of join, there are
alternative implementations, such as symmetric hash join [Wilschut and Apers,
1991] that are non-blocking, and hence more suitable for use with streams. But
the other operators mentioned are inherently blocking for any implementation.
Even if an operator has a non-blocking implementation, if it is stateful, such as
join and duplicate elimination, it will accumulate state without limit, eventually
becoming memory bound.

Thus, extensions or alternatives for current query processing and data anal-
ysis techniques are needed for streams. In this chapter, we survey several
approaches to these challenges, based on data reduction, exploiting semantics
of data streams, and approximation. We first cover exact and lossy filtering
techniques, which attempt to reduce data stream volumes early in the process-
ing chain, in order to reduce the computational demands on later operations.
We then consider the use of stream "punctuation" to incoiporate knowledge
about the internal structure in a data stream that might be useful in unblock-
ing operators or limiting the amount of state that must be retained. We then
consider "windowed" versions of classical operators, which can be viewed as
a continuous user query being approximated by a series of queries over finite
subsequences of an unbounded stream. In this context we also briefly consider
issues with disordered inputs. The final class of techniques we cover are syn-

Filtering, Punctuation, Windows and Synopses 37

opses, which in the stream case can be considered as representations of data
streams that a) summarize the stream input, b) can be maintained online at
stream input rates, c) occupy much less space than the full data, and d) can be
used to provide exact or approximate answers to some class of user queries.

2. Stream Filtering: Volume Reduction
Faced with stream volumes beyond what available resources allow processing

in their entirety, a stream processor can simply abort, or somehow reduce the
volume to a manageable level. Such reduction can take several forms: precise
filtering, data merging, or data dropping.

2.1 Precise Filtering
Precise filtering extracts some portion of a stream query for application

nearer the stream source, with the expectation of reducing stream volume while
not changing the final query answer. Filtering operations generally need to
be simple, such as selection or projection, and applicable on an item-by-item
basis, so as not to consume extensive processing cycles or memory. Filtering
should also avoid introducing long delays into time-critical data streams. This
filtering may happen at the stream source, near the stream-processing system,
or in between.

A source may support subscription to a substream of the full data stream.
For example, the Virtual Object Ring Buffer (VORB) facility of the RoadNet
project [Rajasekar et al., 2004] supports access to real-time information from
an environmental-sensing network. A VORB client can request a substream of
this information restricted on (geographic) space, time and attribute. Financial
feeds also support filtering, such as on specific stocks or currencies.

[Hillston and Kloul, 2001] describe an architecture for an online auction
system where active network nodes serve as filters on the bid stream. Such a
node can filter out any bid for which a higher bid has already been handled for
the same item. (It is also possible that highest bid information is periodically
disseminated from the central auction server to the active network nodes, as
otherwise an active node is only aware of bid values that it handles.) Such
processing is more complex than item-at-a-time filtering. It essentially requires
an anti-semijoin of incoming bids with a cache of previous bids. However, the
space required can be reduced from what is required for a general semijoin by
two considerations. First, only one record needs to be retained for each auction
item - the one with the maximum price so far. (Actually, just the item ID
and bid price suffice.) Second, the cache of previous bids does not need to be
complete - failure to store a previous bid for an item only means that later items
with lower prices are not filtered at the node. Thus an active node can devote a

3 8 STREAM DATA MANAGEMENT

bounded cache to past information, and select bids to keep in the cache based
on recency or frequency of activity on an item.

Gigascope [Johnson et al., 2003] is a stream-processing system targeted at
network monitoring and analysis. It supports factoring of query conditions that
can be applied to the raw data stream arriving at the processor. These conditions
can be applied in the network interface subsystem. In some versions, these filter
conditions are actually pushed down into a programmable network interface
card (NIC).

2.2 Data Merging
Data merging seeks to condense several data items into one in such a way that

the ultimate query can still be evaluated. Consider a query that is computing
the top-5 most active network flows in terms of bytes sent. (Here a flow is
defined by a source and destination IP address and port number.) Byte-count
information for packets from the same flow can be combined and periodically
transferred to the stream-processing system. This approach is essentially what
routers do in generating Netflow records, [Cisco Systems, 2001] , reducing
the volume of data that a network monitoring or profiling application needs to
deal with. Of course, only certain queries on the underlying network traffic
will be expressible over the aggregated Netflow records. A query looking for
the most active connections is expressible, but not an intrusion-detection query
seeking a particular packet signature. Merging can be viewed as a special case
of synopsis. (See Section 6.)

2.3 Data Dropping
Data dropping (also called load shedding) copes with high data rates by

discarding data items from the processing stream, or limiting the processing
of selected items. Naive dropping happens in an uncontrolled manner - for
example, items are evicted without processing from an overflowed buffer. More
sophisticated dropping schemes introduce some criterion that identifies which
data items to remove, based for example, on the effect upon the accuracy of the
answer or an attempt to get a fair sample of a data stream.

The simplest approaches can be termed blind dropping: the decision to
discard a data item is made without reference to its contents. In the crudest
form, blind dropping discards items when CPU or memory limits are exceeded:
Data items are dropped until the stream-processing system catches up. Such a
policy can be detrimental to answer quality, with long stretches of the input being
unrepresented. Better approaches attempt to anticipate overload and spread out
the dropped data items, either randomly or uniformly. For example a VORB
client can throttle the data flow from a data source, requesting a particular rate
for data items, such as 20 per minute.

Filtering, Punctuation, Windows and Synopses 39

Dropping can take place at the stream source, at the leaves of a stream query,
or somewhere in the middle of a query plan. The Aurora data stream manager
provides an explicit drop operator that may be inserted at one or more places in
a network of query operators [Tatbul et al., 2003]. The drop can eliminate items
randomly or based on a predicate (which is termed semantic dropping). Another
approach to intra-query dropping is the modification of particular operators.
[Das et al., 2003] and [Kang et al., 2003] present versions of window join
(see Section 4) that shed load by either dropping items or avoiding the join of
particular items.

Whatever mechanism is used for dropping data items, key issues are de-
termining how much to drop and maximizing answer quality for a given drop
rate. The Aurora system considers essentially all placements of drop operators
in an operator network (guided by heuristics) and precomputes a sequence of
alternative plans that save progressively more processing cycles, called a load-
shedding road map (LSRM). For a particular level of cycle savings, Aurora
selects the plan that maximizes the estimated quality of service (QoS) of the
output. QoS specifications are provided by query clients and indicate, for ex-
ample, how the utility of an answer drops off as the percentage of full output
decreases, or which ranges of values are most important. The two window-
join algorithms mentioned above attempt to maximize the percentage of join
tuples produced for given resource limits. Das et al. point out that random-
ized dropping of tuples in a join can be ineffective by this measure. Consider
a join between r tuples and s tuples on attribute A, Any resources expended
on an r tuple with r.A = 5 is wasted if the only s tuple with s.A - 5 has been
discarded. They instead collect statistics on the distribution of join values, and
retain tuples that are likely to contribute to multiple output tuples in the join.
Kang et. al. look at how to maximize output of a window join given limitations
on computational or memory resources. They demonstrate, for example, with
computational limits, the operator should favor joining in the direction of the
smaller window to the larger window. For limited memory, however, it is better
to allocate that resource to storing tuples from the slower input.

There are tensions in intelligent data dropping schemes, however. On one
hand, one would like to select data items to discard carefully. However, a
complicated selection process can mean more time is spent selecting a data
item to remove than is saved by removing it. Similarly, the value of a data
item in the answer may only be apparent after it passes through some initial
operators. For example, it might be compared to frequent data values in a stream
with which it is being joined. However, discarding a data item in the middle
of a query plan means there are "sunk costs" already incurred that cannot be
reclaimed.

40 STREAM DATA MANAGEMENT

2.4 Filtering with Multiple Queries
For any of the filtering approaches - precise filtering, data merging and

data dropping - the situation is more complicated in the (likely) scenario that
multiple queries are being evaluated over the data streams. Now, the combined
needs of all the queries must be met. With precise filtering, for example, the
filter condition will need to be the union of the filters for the individual queries,
which means the processing of the raw stream may be more complex, and the
net reduction in volume smaller. In a semantic data-dropping scheme, there
may be conflicts in that the least important data items for one query are the
most important for another. (In the multi-query case, Aurora tries to ensure
different users receive answers of approximately equal utility according to their
QoS specifications.)

3. Punctuations: Handling Unbounded Behavior by
Exploiting Stream Semantics

Blocking and stateful query operators create problems for a query engine
processing unbounded input. Let us first consider how a traditional DBMS
executes a query plan over bounded data. Each query operator in the plan reads
from one or more inputs that are directly beneath that operator. When all data
has been read from an input, the operator receives an end of file (EOF) message.
Occasionally a query operator will have to reread the input when it receives EOF
(e.g., a nested-loops join algorithm). If not, the query operator has completed
its work. A stateful query operator can purge its state at this point. A blocking
operator can output its results. Finally, the operator can send the EOF message
to the next operator along in the query plan.

The EOF message tells a query operator that the end of the entire input has
arrived. What if a query operator knew instead that the end of a subset of the
input data set had arrived? A stateful operator might purge a subset of the
state it maintains. A blocking operator might output a subset of its results. An
operator might also notify the next operator in the query plan that a subset of
results had been output. We will explain how "punctuations" are included in a
data stream to convey knowledge about ends of data subsets.

For example, suppose we want to process data from a collection of envi-
ronmental sensors to determine the maximum temperature each hour using a
DBMS. Since data items contain the time they were emitted from the sensor,
we can assume that data from each sensor is sorted (non-decreasing) on time.
In order to calculate the maximum temperature each hour from a single sensor,
we would use the following queiy (in SQL):
SELECT MAX(temp)
FROM sensor
GROUP BY hour;

Filtering, Punctuation, Windows and Synopses 41

Unfortunately, since group-by is blocking and the input is unbounded, this
query never outputs a result. One solution is to recognize that hour is non-
decreasing. As data items arrive, the group-by operator can maintain state for
the current hour. When a data item arrives for a new hour, the results for the
current hour can be output, and the query no longer blocks.

This approach breaks down when the input is not sorted. Even in our simple
scenario, data items can arrive out-of-order to the group-by operator for various
reasons. We will discuss disorder in data streams in Section 5. By embedding
punctuations into the data stream and enhancing query operators to exploit
punctuations, the example query will output results before receiving an EOF,
even if data arrive out-of-order.

3.1 Punctuated Data Streams
A punctuation is an item embedded into a data stream that denotes the end

of some subset of data [Tucker et al., 2003]. At a high level, a punctuation
can be seen as a predicate over the data domain, where data items that pass the
predicate are said to match the punctuation. In a punctuated stream, any data
item that matches a punctuation will arrive before that punctuation. Given a
data item d and a punctuation p, we will use match(d,p) as the function that
indicates whether a d matches p.

The behaviors exhibited by a query operator when the EOF message is re-
ceived may also be partially performed when a punctuation is received. Clearly,
EOF will not arrive from unbounded inputs, but punctuations break up the un-
bounded input into bounded substreams. We define three kinds of behaviors,
called punctuation behaviors, to describe how operators can take advantage of
punctuations that have arrived. First, pass behavior defines when a blocking
operator can output results. Second, keep behavior defines when a stateful op-
erator can release some of its state. Finally, propagate behavior defines when
an operator can output punctuations.

In the environmental sensor example, data output from each sensor are sorted
on time. We can embed punctuations into the stream at regular intervals speci-
fying that all data items for a particular prefix of the sorted stream have arrived.
For example, we can embed punctuations at the end of each hour. This ap-
proach has two advantages: First, we do not have to enhance query operators to
expect sorted input (though we do have to enhance query operators to support
punctuations). Second, query operators do not have to maintain sorted output.

3.2 Exploiting Punctuations
Punctuation behaviors exist for many query operators. Non-trivial behaviors

are listed in Tables 3.1, 3.2 and 3.3. The pass behavior for group-by says that
results for a group can be output when punctuations have arrived that match all

42 STREAM DATA MANAGEMENT

Table 3.1. Non-trivial pass behaviors for blocking operators, based on punctuations that have
arrived from the input(s).

Group-by Groups that match punctuations that describe the grouping
attributes.

Sort Data items that match punctuations that have arrived cover-
ing all possible data items in a prefix of the sorted output.

Difference (S1-S2) Data items in Si that are not in S2 and match punctuations
from 62.

Table 3.2. Non-trivial propagation behaviors for query operators, based on punctuations that
have arrived from the input(s).

Select All punctuations.
Dupelim All punctuations.
Project^ The projection of A on punctuations that describe the projection at-

tributes.
Group-by Punctuations that describe the group-by attributes.
Sort Punctuations that match all data in a prefix of the sorted output.
Join The result of joining punctuations that describe the join attributes.
Union Punctuations that equal some punctuation from each other inputs.
Intersect Punctuations that equal some punctuation from each other inputs.
Difference Punctuations that equal some punctuation from each other inputs.

possible data items that could participate in that group. The keep behavior for
group-by says that state for a group can be released in similar circumstances.
Finally, the propagate behavior for group-by says that punctuations that match
all possible data items for a group can be emitted (after all results for that
group have been output). For example, when group-by receives the punctuation
marking the end of a particular hour, the results for that hour may be output, state
required for that hour can be released, and a punctuation for all data items with
that hour can be emitted. Notice that ordering of data items on the hour attribute
does not matter. Even if data arrives out of order, as long as the punctuation
correctly denotes the end of each hour, the results will still be accurate.

Many query operators require specific kinds of punctuations. We saw above
that the pass behavior for group-by was to output a group when punctuations had
arrived that matched all possible data items that can participate in that group.
A set of punctuations P describes a set of attributes A if, given specific values
for A, every possible data item with those attribute values for A matches some
punctuation in P. For example, punctuations from the environment sensors that
denote the end of a particular hour describe the hour attribute, since they match
all possible data items for a particular hour.

Filtering, Punctuation, Windows and Synopses 43

Table 3.3. Non-trivial keep behaviors for stateful query operators, based on punctuations that
have arrived from the input(s).

Dupelitn Data items that do not match any punctuations received so far.
Group-by Data items that do not match punctuations describing the grouping at-

tributes.
Sort Data items that do not match any punctuations covering all data items in

the prefix of the sorted output defined in the pass behavior.
Join Data items that do not match any punctuations from the other input that

describe the join attributes.
Intersect Data items that do not match any punctuations from the other input.
Difference Data items that do not match any punctuations from the other input.

Table 3.4.

Pattern

wildcard
constant
list
range

Punctuation patterns.

Representation

*
c
{C1,C2,... }
(ci ,c2)

Match Rule

All values.
The value c.
Any value a in the list.
Values greater than a and less than a.

3.3 Using Punctuations in the Example Query
Suppose in the environmental sensor example each sensor unit outputs data

items that contain: sensor id, temperature, hour, and minute. Thus an example
stream from sensor 3 might contain: [< 3,75,1,15 >, < 3,78,1,30 >, <
3,75,1,45 > , < 3,76,2,0 > , < 3,75,2,15 >, . . .] . We would like to have
the sensors emit punctuations that denoted the end of each hour, to unblock the
group-by operator. We treat punctuations as stream items, where punctuations
have the same schema as the data items they are matching and each attribute
contains a pattern. Table 3.4 lists the patterns an attribute in a punctuation can
take.

We want punctuations embedded into the data stream denoting the end of data
items for a specific hour. One possible instantiation of such a stream might be
(where the punctuation is prefixed with P): [< 3,75,1,15 >, < 3,78,1,30 >
, < 3,75,1,45 >, < 3,76,2,0 >, P < *, *, 1, * >, < 3,75,2,15 >]. All data
items containing the value 1 for hour match the punctuation.

How will punctuations that mark the end of each hour help our example
query, where we take input from many sensors? We examine each operator
in turn. Suppose our query plan is as in Figure 3.1, and each sensor emits
punctuations at the end of an hour. As data items arrive at the union operator,
they are immediately output to the group-by operator. Note that union does not
attempt to enforce order. Due to the propagation invariant for union, however,

44 STREAM DATA MANAGEMENT

Figure 3.1. Possible query tree for the environment sensor query.

punctuations are not immediately output as they arrive. Instead, union stores
punctuations in its state until all inputs have produced equal punctuations. At
that point, a punctuation is output denoting the end of data items for that hour.

When a data item arrives at group-by, the appropriate group is updated, in
this case, the maximum temperature for a specific hour. When a punctuation
denoting the end of an hour arrives, group-by can output results for that hour,
clear out its state for that hour, and emit a new punctuation denoting the end
of data items for that hour. Thus, the query is unblocked, and the amount of
state required has been reduced, making it more appropriate for unbounded data
streams.

3.4 Sources of Punctuations
We have seen how punctuated streams help query operators. However, we

have not explained how punctuations get into a data stream. We posit a logical
operator that embeds punctuations and can occur in various places: at the stream
source, at the edge of the query processor, or after query operators within the
query. We call this operator the insert punctuation operator. There are many
different schemes for implementing the insert punctuation operator. Which
scheme to choose depends on where the information resides for generating
punctuation. We list some alternatives below:

• Source or sensor intelligence: The stream source may know enough to
emit a punctuation. For example, the individual environmental sensors
produced data sorted on time. When an hour ended, the sensor emitted
punctuation that all reports for that hour had been output.

• Knowledge of access order: Scan or fetch operations may know some-
thing about the source, and generate punctuations based on that knowl-
edge. For example, if scan is able to use an index to read a source, it may

Filtering, Punctuation, Windows and Synopses 45

use information from that index to tell when all values for an attribute
have been read.

• Knowledge of stream or application semantics: An insert punctua-
tion operator may know something about the semantics of its source. In
the environmental example, temperature sensors might have temperature
limits, say -20F and 125F. An insert punctuation operator can output two
punctuations immediately: One that says there will not be any tempera-
ture reports below -20F and another that says there will not be any reports
above 125F.

• Auxiliary information: Punctuation may be generated from sources
other than the input stream, such as relational tables or other files. In the
environmental example, we might have a list of all the sensor units. An
insert punctuation operator could use that to determine when all sensors
output results for a particular hour, and embed the punctuation itself. This
approach can remove punctuation logic from the sensors.

• Operator semantics: Some query operators impose semantics on output
data items. For example, the sort operator can embed punctuations based
on its sort order. When it emits a data item, it can follow that data item
with a punctuation stating that no more data items will appear that precede
that item in order.

3.5 Open Issues
We have seen that punctuations can improve the behavior of individual query

operators for processing unbounded data streams. One issue not addressed yet
is how to determine if punctuations can improve the behavior of entire queries.
There are two questions here: First, what kinds of queries can be helped by
punctuations? Not all queries can be improved by punctuations; we would like
to be able to characterize those that can. The second question is, given a query
(that we believe can be improved by punctuations), what kinds of punctuations
will help that query? We refer to the set of punctuations that will be emitted
from a stream source as the punctuation scheme of that source. In the sensor
query, a punctuations scheme that describes the hour attribute helps the query,
but so do schemes that punctuate every 20 minutes, or at the end of every second
hour.

A related question is, of the kinds of punctuation schemes that will improve
the behavior of a query, which are most efficient? Again referring to the envi-
ronmental query, if punctuations are emitted at the end of each hour, memory
usage is minimized since state is purged as soon as possible. However, this
choice maximizes the number of punctuations in the stream. If instead punctu-
ations are embedded every six hours, then memory usage is increased but the

46 STREAM DATA MANAGEMENT

number of punctuations in the stream is reduced and the processing time for
them is reduced.

One final issue relates to query optimization. Given a logical query, do two
(or more) equivalent query plans exist that exhibit different behaviors based
on the same input punctuation scheme? For example, if one query plan is
unblocked by the scheme and another is not, then choosing the unblocked
query plan is most logical. Optimizing for state size is more difficult, since
punctuation schemes do not give guarantees on when a particular punctuation
will arrive. However, it would be useful for a query optimizer to choose the
query plan with the smallest predicted requirement for memory.

3.6 Summary
Punctuations are useful for improving the behavior of queries over un-

bounded data streams, even when the input arrives out-of-order. Query op-
erators act on punctuations based on three kinds of behaviors: Pass behavior
defines when a blocking operator can output results. Keep behavior defines
what state must be kept by a stateful operator. Propagation behavior defines
when an operator can emit punctuation.

4, Windows: Handling Unbounded Behavior by
Modifying Queries

Windowing operates on the level of either a whole query or an individual
operator, by changing the semantics from computing one answer over an en-
tire (potentially unbounded) input streams to repeated computations on finite
subsets (windows) of one or more streams. Two examples:

1 Consider computing the maximum over a stream of temperature read-
ings. Clearly, this query cannot emit output while data items are still
arriving. A windowed version of this query might, for example, compute
the maximum over successive 3-minute intervals, emitting an output for
each 3-minute window.

2 Consider a query that matches packet information from two different
network routers. Retaining all items from both sources in order to perform
a join between them will quickly exhaust the storage of most computing
systems. A windowed version of this query might restrict the matching
to packets that have arrived in the last 15 seconds. Thus, any packet
over 15 seconds old can be discarded, once it has been compared to the
appropriate packets from the other input.

There are several benefits from modifying a query with windows.
• An operation, such as aggregation, that would normally be blocking can

emit output even while input continues to arrive.

Filtering, Punctuation, Windows and Synopses 47

• A query can reduce the state it must retain to process the input streams.

• Windowing can also reduce computational demands, by limiting the
amount of data an operation such as join must examine at each itera-
tion.

There have been many different ways of defining windows proposed. The size
of a window can be defined in terms of the number of items or by an interval
based on an attribute in the items, such as a timestamp. The relationship between
successive window instances can vary. In a tumbling window [Carney et al.,
2002], successive window instances are disjoint, while in a sliding window the
instances overlap. Window instances may have the same or different sizes. For
example, in a landmark window [Gehrke et al., 2001], successive instances
share the same beginning point (the landmark), but have successively later
endpoints.

5. Dealing with Disorder
Stream queiy approaches such as windowing often require that data arrive

in some order. For example, consider the example from Section 3, where we
want the maximum temperature value from a group of sensors each hour. This
query can be modified to a window queiy that reports the maximum temperature
data items in each hour interval is output, as follows (using syntax similar to
CQL [Arasu et al., 2003]):

SELECT MAX(temp)
FROM sensor [RANGE 60 MINUTES];
In a simple implementation, when a data item arrives that belongs to a new

window, the results for the current window is "closed" its maximum is output,
and state for a new window is initialized. However, such an implementation
assumes that data arrive in sorted order. Suppose the data items do not quite
arrive in order. How can we accurately determine if a window is closed?

5.1 Sources of Disorder
A data stream is in disorder when it has some expected arrival order, but its

actual arrival order does not follow the expected arrival order exactly. It may
be nearly ordered, but with a few exceptions. For example, the following list of
integers is in disorder: [1,2,3,5,4,6,7,9,10,8]. Clearly the list is close to being
in order, and can be put back in order with buffering.

Disorder can arise in a data stream for several reasons: Data items may take
different routes, with different delays, from their source; the stream might be
a combination of many sources with different delays; the ordering attribute of
interest (e.g., event start time) may differ from the order in which items are
produced (e.g., event end time). Further, an operator in a stream processing

48 STREAM DATA MANAGEMENT

system may not maintain sort order in its output, even if the data items arrive
in order. For a simple example, consider the union operator. Unless it is
implemented to maintain sorted order, its output will not necessarily be ordered.

5.2 Handling Disorder
A query operator requiring ordered data can be modified to handle data

streams in disorder. First, it must know the degree of disorder in the stream:
how far away from sorted order each data item in the stream can be. There
are two approaches we discuss: global disorder properties and local disorder
properties. Once the operator can determine the degree of disorder, it has a
least two choices on how to proceed. It can put its input into sorted order, or it
can process the input out of order.

5.2.1 Expressing the Degree of Disorder in a Data Stream. The degree
of disorder can be expressed using global or local stream constraints. A global
disorder property is one that holds for the entire stream. Several systems use
this approach. In Gigascope [Johnson et al., 2003], the degree of disorder can
be expressed in terms of the position of a data item in the stream, or in terms of
the value of the sorting attribute in a data item. A stream is increasing within
5 if, for a data item / in stream S, no data item arrived 8 items before t on S
that precede / in the sort order. Thus, disorder is expressed in terms of a data
item's position in the stream. Similarly, a stream is banded-increasing (e) for
an attribute A if, for a data item / in stream S, no data item precedes tinS with
a value for A greater than tA + e.

Related to these notions from Gigascope are slack in Aurora [Carney et al.,
2002] and k-constraints in STREAM [Babu et al., 2004]. In Aurora, an operator
that requires sorted input is given an ordering specification, which contains
the attribute on which the order is defined and a slack parameter. The slack
parameter specifies how out of order a data item might arrive, in terms of
position. In STREAM, a ^-constraint specifies how strictly an input adheres to
some constraint. One kind of ^-constraint is k-ordering, where k specifies that
out-of-order items are at most k positions away from being in order. Note that
k = 0 implies sorted input.

There are two advantages to using a global disorder property approach. First,
it is relatively simple to understand in that it is generally expressed with a single
integer. Second, it generally gives a bound on the amount of state required
during execution and the amount of latency to expect in the output. However,
global disorder properties also have disadvantages. First, it is not always clear
what the constraint should be for non-leaf query operators in a query plan.
For example, suppose a query has a windowed aggregate operator above the
union of five inputs. We may know the degree of disorder of each input to the
union, but what is the degree of disorder for the output of union? A second

Filtering, Punctuation, Windows and Synopses 49

disadvantage is that it is generally not flexible. A bursty stream will likely have
a higher degree of disorder during bursts and a lower degree during lulls. If we
want accurate results, we must set global disorder constraint to the worst-case
scenario, increasing the latency at other times.

A second way to express the degree of disorder is through local disorder
properties [Tucker and Maier, 2003]. In this method, we are able to determine
through properties of the stream the degree of disorder during execution. One
method to determining local disorder is to use punctuations. Appropriate punc-
tuation on an ordering attribute can be used, for example, to close a window for
a windowed operator. Punctuations are propagated to other operators higher
up in the query plan. Thus, there is not the problem of how disorder in lower
query operators translates to disorder in operators further along in a queiy tree.
In STREAM, the k value for a ^-constraint can dynamically change based on
data input, similar to a local disorder property. A monitoring process checks
the input data items as they arrive, and tries to detect when the lvalue for useful
constraints changes during execution.

The main advantage of using a local disorder property approach is its flexi-
bility. The local disorder property approach can adapt to changes in the stream,
such as bursts and lulls. However, since the degree of disorder may not re-
main static throughout execution, we cannot determine a bound for the state
requirement as we can with global disorder properties.

5.2.2 Processing Disordered Data Streams. Once an operator knows
the degree of disorder in its input, it can begin processing data from the input
stream. One approach in handling disorder is to reorder the data as they arrive in
the leaf operators of the queiy, and use order-preserving operators throughout
the query. In Aurora, disordered data streams are ordered using the BSort
operator. BSort performs a buffer-based sort given an ordering specification.
Suppose n is the slack in the ordering specification. Then the BSort operator
sets up a buffer of size /i+7, and as data items arrive they are inserted into the
buffer. When the buffer fills, the minimum data item in the buffer according
to the sort order is evicted. Note that if data items arrive outside the slack
parameter value, they are still placed in the buffer and output as usual. Thus,
the BSort operator is only an approximate sort, and its output may still be in
disorder.

As data are sorted (at least approximately), later operators should preserve
order. Some operators, such as select and project, already maintain the input or-
der. It is a more difficult task for other operators. Consider an order-preserving
version of union, and suppose it is reading from two inputs already in order.
Union outputs the minimum data item, according to the sort order, from the two
inputs. This implementation is simple for reliable inputs, but data streams are
not always reliable. Suppose one of the inputs to union stalls. The union oper-

50 STREAM DATA MANAGEMENT

ator cannot output data items that arrive on the other input until the stalled input
resumes. Maintaining order in other operators, such as join, is also non-trivial.

Instead of forcing operators to maintain order, an alternative is for data to
remain disordered, and process each data item as it arrives. Many operators
(again select and project are good examples) do not require data to arrive in
order. However, operators that require some sort of ordered input must still
determine the degree if disorder in the input. If we use one of the global
disorder property approaches, then we must estimate the degree of disorder of
the output based on the global disorder properties of the input. However, if
we use punctuations, then disorder information is carried through the stream
automatically using each operator's propagation behaviors.

5.3 Summary
Many operators, such as window operators, are sensitive to window order.

However, as streams are not always reliable data sources, disorder may arise.
To handle disorder, an operator must first determine the degree of disorder in its
inputs. Once the degree of disorder is determined, then the operator can either
resort the data process the data out-of-order. We have presented different ways
to express disorder in a stream, and the advantages and disadvantages of sorting
data compared to processing data out-of-order.

6. Synopses: Processing with Bounded Memory
Two key parameters for processing user queries over continuous, potentially

unbounded data-streams are (1) the amount of memory made available to the
on-line algorithm, and (2) the per-item processing time required by the query
processor. Memory, in particular, constitutes an important design constraint
since, in a typical streaming environment, only limited memory resources are
available to the data-stream processing algorithms. In such scenarios, we need
algorithms that can summarize the underlying streams in concise, but reasonably
accurate, synopses that can be stored in the allotted amount of memory and
can be used to provide approximate answers to user queries along with some
reasonable guarantees on the quality of the approximation. Such approximate,
on-line query answers are particularly well suited to the exploratory nature
of most data- stream processing applications such as, e.g., trend analysis and
fraud or anomaly detection in telecom-network data, where the goal is to identify
generic, interesting or "out-of-the-ordinary" patterns rather than provide results
that are exact to the last decimal

In this section, we briefly discuss two broad classes of data-stream synopses
and their applications. The first class of synopses, termed AMS sketches, was
originally introduced in an influential paper by [Alon et a l , 1996] and relies on
taking random linear projections of a streaming frequency vector. The second

Filtering, Punctuation, Windows and Synopses 51

class of synopses, termed FM sketches, was pioneered by [Flajolet and Martin,
1995] and employs hashing to randomize incoming stream values over a small
(i.e., logarithmic-size) array of hash buckets. Both AMS and FM sketches
are small-footprint, randomized data structures that can be easily maintained
on-line over rapid- rate data streams; furthermore, they offer tunable, proba-
bilistic accuracy guarantees for estimating several useful classes of aggregate
user queries. In a nutshell, AMS sketches can effectively handle important
aggregate queries that rely on bag semantics for the underlying streams (such
as frequency- moment or join-size estimation), whereas FM sketches are useful
for aggregate stream queries with set semantics (such as estimating the number
of distinct values in a stream). Before describing the two classes of sketches in
more detail, we first discuss the key elements of a stream-processing architec-
ture based on data synopses.

6.1 Data-Stream Processing Model
Our generic data-stream processing architecture is depicted in Figure 3.2. In

contrast to conventional DBMS query processors, our query-processing engine
is allowed to see the data tuples in relations i?i,..., Rr only once and in the
fixed order of their arrival as they stream in from their respective source(s).
Backtracking over a stream and explicit access to past tuples is impossible;
furthermore, the order of tuples arrival for each streaming relation i^ is arbitrary
and duplicate tuples can occur anywhere over the duration of the stream. (In
general, the stream rendering each relation can comprise tuple deletions as well
as insertions, and the sketching techniques described here can readily handle
such update streams.)

Consider an aggregate query Q over relations i?i,..., B^ and let Ndenote an
upper bound on the total number of streaming tuples. Our data-stream process-
ing engine is allowed a certain amount of memory, typically significantly smaller
than the total size of its inputs. This memory is used to continuously maintain
a concise sketch synopsis of each stream Bi (Figure 3.2). The key constraints
imposed on such synopses are that: (1) they are much smaller than the size of
the underlying streams (e.g., their size is logarithmic or poly-logarithmic in TV);
and, (2) they can be easily maintained, during a single pass over the streaming
tuples in the (arbitrary) order of their arrival. At any point in time, the ap-
proximate query-processing engine can combine the maintained collection of
synopses to produce an approximate answer to query Q.

6.2 Sketching Streams by Random Linear Projections:
AMS Sketches

Consider a simple stream-processing scenario where the goal is to estimate
the size of a binary equi-join of two streams R\ and i?2 on join attribute A,

52 STREAM DATA MANAGEMENT

Swam for IU

Staacii
fotlU

Sketch!
ibrR2!

« • • Stomb
fofRr

Mtaoty

Stream fw Re

Synopii fr-Mai msftaace

^
frocessang; Bngir

toquecy Q

vQuery

Figure 3.2, Synopsis-based stream query processing architecture.

as the tuples of i?i and R2 are streaming in. Without loss of generality, let
[M] = {0, ..., M - 1} denote the domain of the join attribute A, and let fk(i)
be the frequency of attribute value i in i ^ . Thus, we want to produce an
estimate for the expression Q =]T\ / i(i)/2(i) . Clearly, estimating this join
size exactly requires space that is at least linear in M, making such an exact
solution impractical for a data-stream setting.

In their influential work, [Alon et al., 1996], [Alon et al., 1999] propose a
randomized join-size estimator for streams that can offer strong probabilistic
accuracy guarantees while using space that can be significantly sublinear in M.
The basic idea is to define a random variable Xthat can be easily computed
over the streaming values of JRI.^4 and R2.A such that: (1) X is an unbiased
(i.e., correct on expectation) estimator for the target join size, so that E[X]
= Q; and, (2) Xs variance can be appropriately upper-bounded to allow for
probabilistic guarantees on the quality of the Q estimate. This random variable
Xis constructed on-line from the two data streams as follows:

Select a family of four-wise independent binary random variables {<§ :
i — 0,. . . ,M — 1}, where each & assumes a value of either +1 or - 1 ,
each with probability 1/2. Informally, the four-wise independence con-
dition means that for any 4-tuple of £ variables and for any 4-tuple of
{+1, -1} values, the probability that the values of the variables coincide
with those in the {+1, -1} 4-tuple is exactly 1/16 (the product of the
equality probabilities for each individual £). The crucial point here is
that, by employing known tools for the explicit construction of small
sample spaces supporting four-wise independence, such families can be
efficiently constructed on-line using only O(log M) space.

Filtering, Punctuation, Windows and Synopses 53

• Define X = X\.X^ where Xk = YLi fk(i)-£>u fc>r fc=l,2. The scalar
quantities X\ and X<i are called the atomic AMS sketches of streams
R\ and Ri, respectively. Each Xk is simply a random linear projection
(i.e., an inner product) of the frequency vector of attribute JF^.A with the
random vector of £?;'s that can be efficiently generated from the streaming
values ofRk.A: Initialize a counter with Xk ~ 0 and simply add & to Xk
whenever value i is observed in the it& stream.

Using the four-wise independence property for the 4;'s, it is easy to verify
that the atomic estimate X constructed using the process above is an unbiased
estimate for Q and its variance can be appropriately upper bounded (Alon et al.,
1996, 1999). Furthermore, note that, by virtue of linearity, handling deletions
in the stream(s) becomes straightforward: To delete an occurrence of value i,
simply subtract & from the running counter.

As an example, suppose the Ri.A and R^-A streams comprise, in order, the
data values [1, 1, 2, 3, 1,3] and [3, 1,3, 1, 1], respectively. Projecting on the
family of random variables £?;, the atomic sketches of the two streams are X\ —
£i + 6 + 6 + 6 + 6 + & = Hi + £2 + 2& and X2 = 3& + 2&, respectively.
Using a specific family of binary random variates, say £ = {£ = —1,^2 —
+ 1 , £3 = - 1 } , we get the atomic AMS sketches Xi = - 3 + 1 - 2 = - 4 and
X2 = -3-2 = -5, and the atomic estimate X= (-4)(-5) == 20, which approximates
the true size of the binary join, i.e., 13.

The approximation guarantees of the randomized AMS join-size estimate
can be improved using standard boosting techniques that maintain several in-
dependent instantiations of the above-described process, and use averaging and
median-selection operators over the atomic X estimates to boost accuracy and
probabilistic confidence (Alon et al. 1996, 1999). Thus, the AMS sketch for
each stream (Figure 3.2) essentially comprises several independent atomic AMS
sketch instances (constructed by simply selecting independent random seeds for
generating the families of four-wise independent £ 's for each instance).

Extensions of the Basic Method and Applications. The basic ideas of AMS
(more generally, random-linear-projection) sketches have found applications in
a number of important data-stream processing problems. [Dobra et al., 2002]
and [Dobra et al., 2004] extend the techniques and results of Alon et al. to
handle the estimation of complex, multi-join aggregate queries over streams;
they also develop algorithms for effectively processing multiple such queries
concurrently over a collection of streams by intelligently sharing sketching
space and processing. [Feigenbaum et al., 1999] and [Indyk, 2000] use random
linear projections to accurately estimate Lp norms over vectors rendered as
streams of item arrivals. AMS sketches are also employed by [Charikar et al.,
2002] to efficiently process top-k queries over a stream of items, and [Gilbert
et al., 2001], [Gilbert et al., 2002] to build approximate histograms and wavelet

54 STREAM DATA MANAGEMENT

decompositions over streams. Recent work has also demonstrated the utility
of AMS sketching in dealing with more complex stream-processing scenarios,
such as approximating queries with spatial predicates (e.g., overlap joins) over
streams of multi-dimensional spatial data [Das et al., 2004], or estimating tree- ,
edit-distance similarity joins over streaming XML documents [Garofalakis and
Kumar, 2003].

6.3 Sketching Streams by Hashing: FM Sketches
Consider the problem of estimating the number of distinct values in a stream

of arriving attribute values R.A, where the domain of the attribute is again
assumed, without loss of generality, to be [M] = {0, ..., MA} . (Here, R can
denote the union of any subset of the i^ streams in Figure 3.2.) As a simple
example, for the stream [1, 3, 1, 3, 5, 3, 7] the exact number of distinct values
is 3; note that, unlike joins, this query has set semantics (i.e., the multiplicity
of values appearing in the stream is unimportant). Once again, this estimation
problem can be solved exactly in space that is linear in M, which could be
impractical in a data-stream setting.

To build a small-space estimate for the number of distinct values in a stream,
[Flajolet and Martin, 1995] employ a combination of: (1) a hash function h()
that maps incoming data values uniformly and independently over the collection
of binary strings in the input data domain [M\; and, (2) the lsb() operator that
returns the position of the least-significant 1-bit in its input binary string. The
basic idea in their scheme is to map each incoming data value / to lsb(h(i)).
Obviously, lsb(h(i)) G {0,..., logM — 1} and, furthermore, it is easy to verify
that lsb(h(i))= k with probability 2-(/c+1) for each k = 0,..., log MA.

An atomic FM sketch maintained by the basic Flajolet-Martin scheme is
simply a bit-vector of size O(log M). This bit-vector is initialized to all zeros
and, for each incoming stream value /, the bit located at position lsb(h(i)) is
switched on. The key observation here is that, by virtue of the exponentially-
decaying probabilities for the lsb(h()) values, we expect a fraction of 2~(fc+1)
of the distinct values in the stream to map to location k in the bit-vector; in other
words, if D denotes the number of distinct values in the stream, we expect D/2
values to map to bit 0, D/4 values to map to bit 1, and so on. Thus, intuitively, at
any point in the stream, the location / of the leftmost zero in the FM bit-vector
sketch provides a good basic estimate of log Z), or 2? « D .

Again, the accuracy and probabilistic confidence of FM-sketching estimates
can be boosted using several independent instantiations of the process above
(i.e., several atomic FM sketches with independently-chosen hash functions).
Detailed analyses and formal results for FM-sketching techniques can be found
in [Alon et al., 1996], [Flajolet and Martin, 1995]; [Ganguly et al., 2003].
FM sketches can also handle deletions in the stream: The basic idea is to

Filtering, Punctuation, Windows and Synopses 55

maintain a counter (instead of a bit) for each location of the synopsis vector,
and simply increment (decrement) the counter at location lsb(h(i)) for each
insertion (respectively, deletion) of value i.

Extensions of the Basic Method and Applications. Recent work has ex-
tended the ideas of FM (i.e., hashing-based) sketches and explored their use
in different data-stream processing domains. [Gibbons, 2001] employs the
idea of hashing into buckets with exponentially decaying probabilities to ob-
tain a distinct sample summary for estimating SQL aggregates with a DISTINCT
clause. [Ganguly et al., 2003] extend the basic FM sketch synopsis structure
and propose novel estimation algorithms for estimating general set-expression
cardinalities over streams of updates. Finally, [Considine et al., 2004] propose
FM-sketching techniques for approximate, communication-efficient aggrega-
tion over wireless sensor networks.

6.4 Summary
AMS and FM sketches represent two important classes of randomized syn-

opsis data structures for streaming data with several applications in stream-
processing problems. Besides having a small memory footprint and being
easily computable in the streaming model, these sketch synopses can also eas-
ily handle deletions in the streams. An additional benefit of both AMS and
FM sketches is that they are composable; that is, they can be individually
computed over a distributed collection of sites (each observing only a portion
of the stream) and then combined (e.g., through simple addition or bit-wise
OR) to obtain a sketch summary of the overall stream. Several other types of
(deterministic and randomized) stream synopses have been proposed for differ-
ent streaming problems. Vitter's reservoir-sampling scheme for constructing
a uniform random sample over an insert-only stream [Vitter, 1985] is proba-
bly one of the first known stream-summarization techniques. [Greenwald and
Khanna, 2001] and [Manku and Motwani, 2002] propose deterministic, small-
footprint stream synopses for computing approximate quantiles and frequent
itemsets, respectively. [Datar et al., 2002] consider the problem of maintaining
approximate counts over a sliding window of an input stream; their proposed
(deterministic) exponential histogram synopses employ histogram buckets of
exponentially-growing sizes and require space that is only poly-logarithmic in
the size of the sliding window. Other stream-synopsis structures for sliding-
window computation have been recently proposed by [Gibbons and Tirthapura,
2002], and [Arasu and Manku, 2004].

7. Discussion
We wish to raise two points in closing. The first is that there are areas of

overlap among the various techniques described in this chapter. For example,

56 STREAM DATA MANAGEMENT

a windowed aggregate query is not that different from a group-by query on
the window attribute with appropriate punctuation. Both serve to unblock a
normally blocking operation, and both limit the amount of state the operations
in a query must maintain. The second is that these techniques can sometimes
be used in combination. For example, the Data Triage architecture of the
TelegraphCQ system switches to computing a synopsis of an incoming data
stream when it must drop tuples because it cannot keep up with the current data
rate [Reiss and Hellerstein, 2004].

Acknowledgments
We would like to thank Leonidas Fegaras, Jin Li, Vassilis Papadimos, Tim

Sheard and Kristin Tufte for discussions on punctuations, window queries
and disorder, as well as Rajeev Rastogi for numerous discussions on stream
synopses. The first two authors were supported in part by DARPA through
NAVY/SPAWAR contract N66001-99-108908 and by NSF TTR award
IIS 0086002.

References
Alon, N., Gibbons, P., Matias, Y., and Szegedy, M. (1999). Tracking join and

self-join sizes in limited storage. In Proceedings of ACM PODS Conference,
pages 10-20.

Alon, N., Matias, Y, and Szegedy, M. (1996). The space complexity of ap-
proximating the frequency moments. In Proceeding ofACMSTOC Conference,
pages 20-29.

Arasu, A., Babu, S., and Widom, J. (2003). The CQL continuous query
language: semantic foundations and query execution. Stanford University TR
No. 2003-67 (unpublished).

Arasu, A. andManku, G. S. (2004). Approximate counts and quantiles over
sliding windows. In Proceedings of ACM PODS Conference, pages 286-296.

Babu, S., Srivastava, U., and Widom, J. (2004). Exploiting k-constraints
to reduce memory overhead in continuous queries over data streams. TODS,
29(3):545-580.

Carney, D., Cetintemel, Ugur, Cheraiack, Mitch, Convey, Christian, Lee,
Sangdon, Seidman, Greg, Stonebraker, Michael, Tatbul, Nesime, and Zdonik,
Stanley B. (2002). Monitoring Streams - A New Class of Data Management
Applications. In VLDB Conference, pages 215-226.

Charikar, M., Chen, K., and Farach-Colton, M. (2002). Finding frequent
items in data streams. In Proceedings ofJCALP Conference, pages 3-15.

Cisco Systems. (2001). Netflow Services Solutions Guide.

Filtering, Punctuation, Windows and Synopses 57

Considine, J., Li, R, Kollios, G., andByers, J. (2004). Approximate aggrega-
tion techniques for sensor databases. In Proceedings of IEEE ICDE Conference,
pages 449-460.

Das, A., Gehrke, J., and Riedewald, M. (2003). Approximate join processing
over data streams. In Proceedings ofACMSIGMOD Conference, pages 40-51.

Das, A., Riedewald, M., and Gehrke, J. (2004). Approximation techniques
for spatial data. In Proceedings ofACMSIGMOD Conference, pages 695-706.

Datar, M., Gionis, A., Indyk, P., and Motwani, R. (2002). Maintaining
Stream Statistics over Sliding Windows. In Proceedings of SODA Conference,
pages 635-644.

Dobra, Alin, Garofalakis, Minos, Gehrke, Johannes, and Rastogi, Rajeev
(2002). Processing Complex Aggregate Queries over Data Streams. In Pro-
ceedings ofACMSIGMOD Conference, pages 61-72.

Dobra, Alin, Garofalakis, Minos, Gehrke, Johannes, and Rastogi, Rajeev
(2004). Sketch-Based Multi-Query Processing over Data Streams. In Proceed-
ings of EDBT Conference, pages 551-568.

Feigenbaum, J., Kannan, S., Strauss, M., and Viswanathan, M. (1999). An
approximate L1- difference algorithm for massive data streams. In Proc. IEEE
FOCS Conference, page 501.

Flajolet, P. and Martin, N. (1995). Probabilistic counting algorithms for data
base applications. JCSS Journal, 31(2): 182-209.

Ganguly, S., Garofalakis, M., and Rastogi, R. (2003). Processing set ex-
pressions over continuous update streams. In Proceedings ofACMSIGMOD
Conference, pages 265-276.

Garofalakis, M. and Kumar, A. (2003). Correlating XML data streams using
tree-edit distance embeddings. In Proceedings of ACM PODS Conference,
pages 143-154.

Gehrke, J., Korn, F., and Srivastava, D. (2001). On computing correlated
aggregates over continual data streams. In Proceedings of ACM SIGMOD
Conference, pages 13-24.

Gibbons, P. (2001). Distinct sampling for highly-accurate answers to distinct
values queries and event reports. In Proceedings of VLDB Conference, pages
541-550.

Gibbons, P. and Tirthapura, S. (2002). Distributed streams algorithms for
sliding windows. In Proceedings of ACM SPAA Conference, pages 63-72.

Gilbert, A. C , Kotidis, Y, Muthukrishnan, S., and Strauss, M. (2001).
Surfing wavelets on streams: one-pass summaries for approximate aggregate
queries. In Proceedings of VLDB Conference, pages 79-88.

Gilbert, A. C , Guha, S., Indyk, P., Kotidis, Y, Muthukrishnan, S., and
Strauss, M. (2002). Fast, small-space algorithms for approximate histogram
maintenance. In Proceedings ofACMSTOC Conference, pages 389-398.

58 STREAM DATA MANAGEMENT

Greenwald, M. B. and Khanna, S. (2001). Space-efficient online compu-
tation of quantile summaries. In Proceedings of ACM SIGMOD Conference,
pages 58-66.

Hillston, J. and Kloul, L. (2001). Performance investigation of an on-line
auction system. Concurrency and Computation: Practice and Experience,
13:23-41.

Indyk, P. (2000). Stable Distributions, Pseudorandom generators, embed-
dings, and data stream computation. In Proceedings oflEEEFOCS Conference,
page 189.

Johnson, T., Cranor, C , Spatscheck, O., and Shkapenyuk, V. (2003). Gi-
gascope: A stream database for network applications. In Proceedings of ACM
SIGMOD Conference, pages 647-651.

Kang, J., Naughton, J. R, and Viglas, S. D. (2003). Evaluating window joins
over unbounded streams. In Proceedings of the International Conference on
Data Engineering (ICDE).

Manku, G. S. and Motwani, R. (2002). Approximate frequency counts over
data streams. In Proceedings ofVLDB Conference, pages 346-357.

Rajasekar, A., Vernon, R, Hansen, T., Linquist, K., and Orcutt, J. (2004).
Virtual object ring buffer: A framework for real-time data grid. In Proceedings
ofHDPC Conference.

Reiss, R and Hellerstein, J. M. (2004). Data triage: An adaptive architecture
for load shedding in TelegraphCQ. Intel Research Berkeley Report IRB-TR-04-
004.

Tatbul, N., Cetintemel, U., Zdonik, S., Cherniack, M., and Stonebraker, M.
(2003). Load shedding in a data stream manager. In Proceedings of VLDB
Conference, pages 309-320.

Tucker, P. A. and Maier, D. (2003). Dealing with disorder. In MPDS Work-
shop.

Tucker, P. A., Maier, D., Fegaras, L., and Sheard, T. (2003). Exploiting
punctuation semantics in continuous data streams. IEEE TKDE, 15(3):555-
568.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Trans, on
Math. Software, ll(l):37-57.

Wilschut, Annita N. and Apers, Peter M. G. (1991). Dataflow query execu-
tion in a parallel main-memory environment. In Proceedings ofPDIS Confer-
ence, pages 68-77.

Chapter 4

XML & DATA STREAMS

Nicolas Bruno,1 Luis Gravano,2 Nick Koudas,3 and Divesh Srivastava3

Microsoft Research
nicolasb@microsoft.com

Columbia University
gravano@cs.columbia.edu

[i> AT&T Labs-Research
koudas,divesh@research.att.com

Abstract XQuery path queries form the basis of complex matching and processing of
XML data. Most current XML query processing techniques can be divided in
two groups. Navigation-based algorithms compute results by analyzing an input
stream of documents one tag at a time. In contrast, index-based algorithms take
advantage of (precomputed or computed-on-demand) numbering schemes over
each input XML document in the stream. In this chapter, we present an index-
based technique, Index-Filter, to answer multiple path queries. Index-Filter
uses indexes built over the document tags to avoid processing large portions of
an input document that are guaranteed not to be part of any match. We ana-
lyze Index-Filter, compare it against Y-Filter, a state-of-the-art navigation-based
technique, and present the advantages of each technique.

Keywords: Data streams, XML, XPath

©2003 IEEE. Reprinted, with permission, from MNavigation-vs. Index-based
XML Multi-query Processing." Nicolas Bruno, Luis Gravano, Nick Koudas
and Divesh Srivastava. In Proceedings of the IEEE International Conference
on Data Engineering (ICDE), pages 139-150, 2003.

60 STREAM DATA MANAGEMENT

1. Introduction
The extensible Markup Language (XML) is a standard for data exchange,

which in recent years, has attracted significant interest from industrial and re-
search forums. Applications increasingly rely on XML to not only exchange
but also query, filter and transform data. Thanks to standard specifications for
web services (such as SOAP, WSDL, etc.) applications can receive requests for
data (specified in XML) and return their answers tagged in XML. Tn addition,
via the use of specific query languages such as XPath and XQuery, users and
applications can compose declarative specifications of their interests as well as
filter and transform specific data items represented in XML.

The reasons behind XML's popularity are not surprising. The ability to
exchange data between entities (applications, systems, individuals, etc.) has
always been of vast importance. Before XML became a reality, the need for
data exchange was met with proprietary techniques defined and supported by
specific vendors. The emergence of XML as a standard and the development
of a core set of specifications around XML enabled the steady transition from
proprietary data representations and languages to XML-enabled suites of appli-
cations. XML is a relatively simple markup language. Every XML document
consists of a set of element nodes, which can be nested and assembled in a hi-
erarchical (tree-structured) fashion. Element nodes have start and end tags for
data associated with each element. XML, as its name suggests, is extensible,
in the sense that one can easily include new element names (tailored to appli-
cation requirements or semantics). Queries in XML query languages, such as
XQuery [Boag et al., 2004b], typically specify patterns of selection predicates
on multiple elements that have some specified tree structured (e.g., parent-child,
ancestor-descendant) relationships, as the basis for matching XML documents.
For example, the path query / /book [. / / t i t l e = ' XML'] matches book el-
ements that have a descendant t i t l e element with a value 'XML'. Finding all
matches to such path queries in an XML document is a core operation in various
XML query processing scenarios that have been considered in the literature.
Since XML representation can be very flexible, Document Type Definitions
(DTDs) and XML schemas are used to ensure that XML documents conform
to specific constraints imposed on the structural relationships the elements can
assume. Various efforts are underway to standardize DTDs and schemas for
specific application domains and kinds of data.

There are two broad classes of problems in which XML has been at the center
of attention, from both an industrial and a research point of view.

1.1 XML Databases
The first class of problems concerns the efficient management of stored data

represented as XML. In this case, traditional data management issues are ex-

XML & Data Streams 61

plored, such as storage of XML in relational and non-relational stores, spec-
ification of query languages for XML, as well as efficient query processing
strategies over large collections of XML data. This XML query processing sce-
nario typically involves asking a single query against (possibly preprocessed
and indexed) XML documents. The goal here is to identify the matches to
the input queiy in each XML document. Approaches to solving this problem
typically take advantage of the availability of indexes on XML elements and
values, and use specialized join algorithms for composing the results of the
index lookups to compute answers to path queries. These are referred to as
index-based algorithms.

This area has been very active in terms of research and development. All
major DBMS vendors support storage and queiying of XML documents in their
engines. Moreover, native XML data managers (i.e., deploying XML specific
storage managers) are now available. We briefly review related work in these
areas later in this chapter.

1.2 Streaming XML
The second class of problems emphasizes the online aspects of XML data dis-

semination and querying. A common characteristic of applications in this class
is that XML data collections are not static any more. Instead, XML documents
arrive continuously forming (potentially unbounded) streams of documents.
This latter class of problems is the focus of this chapter.

There are two main application domains in which XML streams are cur-
rently commonly encountered, namely web services and data dissemination in
publish/subscribe systems.

Web services provide a novel way to link systems and applications together
and expose logic and functionality over networks, eliminating the complexity
and expense of more traditional approaches to connectivity. Such services are
enabled by standards-based technologies, such as SOAP, WSDL and UDDI,
dispensing the need for knowledge of system specifics, such as languages, op-
erating systems, software and version numbers, etc. A prevalent type of web
services is message-based or conversational services in which loosely coupled
systems interact by exchanging entire documents (e.g., purchase orders) tagged
in the lingua franca of web services, namely XML, rather than exchanging dis-
crete sets of parameters. In these types of services, XML tagged documents
are constantly exchanged between applications forming continuous document
streams. A central aspect of such services is the ability to efficiently operate
on XML document streams executing queries in order to extract parts of doc-
uments and drive legacy back-end applications. Commonly, multiple queries
could require execution against the incoming documents. For example, one
query could seek document fragments that relate to a purchase order in order to

62 STREAM DATA MANAGEMENT

populate back-end relational databases. This could mean that the query would
not only extract but also transform the information into relational tuples. A
different queiy could seek to extract billing-related fragments of the document
to populate other databases or trigger an event. Thus, commonly in the web
services application domain, multiple queries have to be executed against in-
coming XML documents. As a result, continuously arriving streams of XML
data pose significant problems regarding simultaneous processing of multiple
queries. Application constraints and/or performance reasons make the online
evaluation of queries on such document streams imperative.

Publish/subscribe systems (see, e.g., [Pereira et al., 2001]) aim to facilitate
data dissemination in various domains. Tn such systems, users (or applications)
register their interest for specific pieces of information as queries. Incoming
documents are matched against such queries and matching documents are dis-
seminated to interested users. In an XML publish/subscribe system, queries are
expressed in some XML query language (such as XPath) and are subsequently
evaluated over each incoming XML document. As in the web services scenario,
a number of challenges exist related to the efficient simultaneous evaluation of
multiple XML queries against incoming documents. It is evident that in such
applications the number of registered queries to be matched against incoming
documents can be large. Depending on the specific application domain (e.g.,
news articles, measurement data, etc.) the size of incoming documents can vaiy
vastly.

Approaches to solving this class of problems (see, e.g., [Altinel and Franklin,
2000; Chan et al., 2002; Ives et al., 2002; Lakshmanan and Parthasarathy,
2002; Peng and Chawathe, 2003; Green et al., 2003; Barton et al., 2003; Gupta
and Suciu, 2003]) typically navigate through the input XML document one tag at
a time, and use the preprocessed structure of path queries to identify the relevant
queries and their matches. These are referred to as navigation-based algorithms.
In contrast, index-based algorithms take advantage of numbering schemes over
the input XML document to identify the relevant document fragments and their
matching queries.

1.3 Contributions
In general, we consider scenarios where multiple XML queries need to be

matched against a stream of XML documents, and either (or neither) of the
queries and the documents may have been preprocessed. In principle, each of
the query processing strategies (index-based and navigation-based) could be
applied in our general scenario. How this is best achieved, and identifying the
characteristics of our general scenario where one strategy dominates the other,
are the subjects of this chapter, the core contents of which appeared in [Bruno
et al., 2003]. We consider the following methods:

XML & Data Streams 63

• A straightforward way of applying the index-based approaches in the lit-
erature to our general scenario would answer each path query separately,
which may not be the most efficient approach, as research on multi-query
processing in relational databases has demonstrated.

We present an index-based technique, Index-Filter, to answer multiple
XML path queries against an XML document. Index-Filter generalizes
the PathStack algorithm of [Bruno et al.5 2002], and takes advantage
of a prefix tree representation of the set of XML path queries to share
computation during multiple query evaluation.

• Navigation-based approaches in the literature could be applied to the
general scenario as well. We enhance Y-Filter [Diao et al., 2003], a
state-of-the-art navigation-based technique, to identify multiple query
matches.

The rest of the chapter is structured as follows. In Section 2 we discuss our
data, streaming, and query models. Section 3 discusses two query processing
techniques. In Section 3.2, we review Y-Filter, a state-of-the-art navigation-
based algorithm, suitably enhancing it for our application scenarios. Then, in
Section 3.3, we present the index-based algorithm, Index-Filter. Finally, in
Section 4, we review related work and draw some connections with broader
research in stream query processing.

2. Models and Problem Statement
In this section, we introduce the XML data, query, and streaming models

that we use in the rest of the chapter, and define our problem statement.

2.1 XML Documents
An XML document can be seen as a rooted, ordered, labeled tree, where each

node corresponds to an element or a value, and the edges represent (direct)
element-subelement or element-value relationships. The ordering of sibling
nodes (children of the same parent node) implicitly defines a total order on the
nodes in a tree, obtained by traversing the tree nodes in preorder. An XML
stream consists of multiple XML documents.

EXAMPLE 4.1 Figure 4.1 shows a fragment of an XML document that specifies
information about a book. The figure shows four children of the book node,
namely: t i t l e , a l l a u t h o r s , year, and chapter, in that order. Intuitively,
we can interpret the XML fragment in the figure as a book published in the year
2000 by Jane Poe, John Doe, and Jane Doe, entitled XML. Its first chapter,
also entitled XKL, starts with the section Origins.

64 STREAM DATA MANAGEMENT

L)book

(5,30,2) allauthors 0 1 , 3 3 , 2) y e a r 0 4 , 5 1 , 2) c h a p t e r

(3 . 3 , 3 , X M L (6 ,13 ,3 , a u t h Q r (i « . a i . 3) a u t h o r <»<"«3> a u t h o r < 3 2 ' 3 2 ' 3) 2 0 0 0 < 3 5 l 3 7 ' 3) title (3 8 > 4 2 ' 3) s e c t i o n

(36:36,4) X M L (39:41,4) h e a d(7 < 9 ' 4) f n In fn In fn In

I I I I I I
Jane Poe John Doe Jane Doe Origins

(40,40,5)

Figure 4.1. A fragment XML document.

(a)

book

title

"XML"

Path query.

book
(1:150,1)
(1:150,1)

(b)

title
(2 : 4 , 2)

(3 5 : 3 7 , 3)

XML
(3 : 3 ,

(3 6 : 3 6

Query answer.

3)
,4)

Figure 4.2. Query model used in this chapter.

The numbers associated with the tree nodes can be thought of as unique node
identifiers in the XML tree, which will be used for efficient query processing.
This will be explained later in Section 3.3.1.

2.2 Query Language
XQuery [Boag et al., 2004b] path queries can be viewed as sequences of

location steps, where each node in the sequence is an element tag or a string
value, and query nodes are related by either parent-child steps (depicted using
a single line) or ancestor-descendant steps (depicted using a double line)?

Given a query q and an XML document D, a match ofq in D is a mapping
from the nodes in q to nodes in D such that: (i) node tags and values are preserved
under the mapping, and (ii) structural (parent-child and ancestor-descendant)
relationships between query nodes are satisfied by the mapped document nodes.
The answer to a query q with n nodes is an n-ary relation where each tuple
(d i , . . . , dn) consists of the document nodes that identify a match of q in D?

EXAMPLE 4.2 Consider again Figure 4.1. The path query //book [. / / t i t l e
= (XML' 3 identifies book elements that have a descendant t i t l e element that

XML & Data Streams 65

in turn have a child 'XML' (value) node. This query can be represented as
in Figure 4.2(a). A match for this query in the XML fragment of Figure 4.1
is the following mapping, where nodes in the document are represented by
their associated numbers: book —» (1 : 150,1), t i t l e —» (2 : 4,2), and
XML —> (3 : 3,3). It is easy to check that both the name tags and the structural
relationships between nodes are preserved by the mapping above. Figure 4.2 (b)
shows the answer to the query in Figure 4.2 (a) over the XML fragment of Fig-
ure 4.1.

2.3 Streaming Model
In streaming XML applications, XML documents arrive continuously form-

ing a potentially unbounded stream. At a fine granularity, this stream can be
viewed as a stream of begin and end tags for document nodes, interspersed with
data values. At a coarser granularity, this stream can be viewed as a stream of
individual XML documents.

The granularity of streaming influences the query processing strategies that
can be used on the stream. Navigation-based strategies are more versatile, and
can be used both at the fine granularity and at the coarser granularity. Index-
based techniques can be used only at the coarser granularity, since they need
to pre-process an entire incoming XML document before query processing can
begin. In both web services and publish/subscribe applications, the coarser
granularity of document streams is appropriate. Hence, in this chapter, we use
the model where the stream consists of individual XML documents.

2.4 Problem Statement
Finding all matches of a path query in an XML document is a core operation

in various XML query processing scenarios that have been considered in the
literature. In this chapter, we consider the general scenario of matching multiple
XML path queries against an XML document in the stream, and focus on the
following problem:

XML Multiple Query Processing: Given a set of path queries Q = {gi, . . . ,qn}
and an XML document D, return the set R — {R\ , . . . , i£n}, where Ri is the
answer (all matches) to qi on D.

In the XML database query processing scenario, Q includes a single query
qi, and the document D is large and indexed. When the XML database query
processing scenario is augmented to deal with multi-query processing, Q in-
cludes multiple queries, and the document D is large and indexed. Finally, in
the XML information dissemination scenario, Q includes many queries, and
the document D is not indexed. In the next section, we study algorithms for
our problem of processing multiple XML path queries efficiently.

66 STREAM DATA MANAGEMENT

A B A A / \ \
II I II II B C D |
B D C B / \ X (Q'}

I II I 0 E^D^
? D E D Q)
D

(a) Path Queries (b) Prefix Tree Representation

Figure 4.3. Using prefix sharing to represent path queries.

3. XML Multiple Query Processing
We now address the central topic of this chapter: processing strategies for

multiple path queries over an XML document. First, in Section 3.1, we describe
a mechanism to compress the representation of multiple input path queries that
is used by the different algorithms in this chapter. Then, in Section 3.2, we
review Y-Filter [Diao et al., 2003], a state-of-the-art algorithm that consumes
the input document one tag at a time and incrementally identifies all input
path queries that can lead to a match. Finally, in Section 3.3, we present
Index-Filter, an algorithm that exploits indexes built over the document tags
and avoids processing tags that will not participate in a match. Section 3.3.3
addresses the problem on how to efficiently materialize the indexes needed by
Index-Filter.

To draw an analogy with relational query processing, Y-Filter can be regarded
as performing a sequential scan of the input "relation," while Index-Filter ac-
cesses the relation via indexes. Extending the above analogy, not surprisingly,
neither algorithm is best under all possible scenarios. In Section 3.4, we sum-
marize the scenarios for which each algorithm is best suited.

3.1 Prefix Sharing
When several queries are processed simultaneously, it is likely that signifi-

cant commonalities between queries exist. To eliminate redundant processing
while answering multiple queries, both the navigation- and index-based tech-
niques identify query commonalities and combine multiple queries into a single
structure, which we call prefix tree. Prefix trees can significantly reduce both
the space needed to represent the input queries and the bookkeeping required
to answer them, thus reducing the execution times of the different algorithms.
Consider the four path queries in Figure 4.3(a). We can obtain a prefix tree
that represents such queries by sharing their common prefixes, as shown in
Figure 4.3(b). Tt should be noted that although other sharing strategies can be
applied, we do not explore them in this work.

XML & Data Streams 61

i
read A,
read C1

read A2

read C2

read B1

read D1
(match Qa,Q,)

0,1
0.1.4
0,1.4
0.1,4

0,1,2,3,4
0,1,4,5,8

0,1
0.1.4
0,1,4

0,1,4
0.1,2,3,4

0,1
0.1.4
0.1.4

0.1.4

- read/D, * / ^ read IB, — '

(a) NFA (b) Document fragment (c) Run-time stack

Figure 4.4. Y-Filter algorithm.

3.2 Y-Filter: A Navigation-Based Approach
Y-Filter is a state-of-the-art navigation-based technique for processing mul-

tiple path queries. The main idea is to augment the prefix tree representation* of
the input queries into a non-deterministic finite automaton (NFA) that behaves
as follows: (i) The NFA identifies the exact "language" defined by the union of
all input path queries; (ii) when an output state is reached, the NFA outputs all
matches for the queries accepted at the state. Unlike an NFA used to identify
a regular language, the filtering of XML documents requires that processing
continues until all possible accepting states have been reached.

The incoming XML document is parsed one tag at a time. While pars-
ing, start-tag tokens trigger transitions in the NFA (the automaton is non-
deterministic, so many states can be active simultaneously). When an end-tag
token is parsed, the execution backtracks to the state immediately preceding the
corresponding start-tag. To achieve this goal, a run-time stack structure is used
to maintain the active and previously processed states.

EXAMPLE 4.3 Consider the NFA shown in Figure 4.4(a), which corresponds
to the prefix tree of Figure 4.3(b). Note that each node in the prefix tree is
converted to a state in the NFA, and the structural relationships in the prefix
tree are converted to transitions in the NFA, triggered by the corresponding
tags. As each start-tag from the document fragment in Figure 4.4(b) is parsed,
the NFA and the run-time stack are updated. Figure 4.4(c) shows the run-time
stack after each step, where each node in the stack contains the set of active
states in the NFA. Initially, only the starting state, 0, is active. When reading the
start-tag for node A\, state 0 fires the transition to state 1, and both states 0 and
1 become active (state 0 remains active due to the descendant edge from state
0 to state 1; otherwise we would not be able to capture the match that uses A&,
which is a descendant of A\). As another example, after reading the start-tag
D\, both states 5 and 8 become active, and therefore a match for queries Qz
and Q% is detected (note that after reading I\, node 2 is not active anymore,
since the firing transition from node 2 to node 5 used a child-not descendant-

STREAM DATA MANAGEMENT

A
A i

i]
C
C i

C
c
2

2

D

k r
A2

A,
\

sA s c s D

(a) Answer for Q3 (b) Stack encoding for Q3

Figure 4.5. Compact solution representation.

structural relationship)^ As a final example, after reading the close-tag for I\,
the run-time stack is backtracked to the state immediately be-fore reading the
start-tag for D\.

Implementation-wise, Y-Filter augments each query node in the NFA with
a hash table. The hash table is indexed by the children node tags, and is used
to identify a particular transition of a given state. Therefore, the NFA can be
seen as a tree of hash tables. This implementation is a variant of a hash table-
based NFA, which has been shown to provide near constant time complexity to
perform state transitions (see [Diao et al., 2003] for more details).

Compact Solution Representation. The original formulation of Y-Filter
[Diao et al., 2003] just returns the set of queries with a non-empty answer
in a given document. However, we are interested in returning all matches as
the answer for each query (see Section 2). Consider again Figure 4.4 when
the algorithm processes D\. The partial matches for query Q% are shown in
Figure 4.5(a). When parsing node D\, the original Y-Filter algorithm would get
to the final state for Q3, only guaranteeing that there is at least one match for
Qs in the document. In other words, there is no way to keep track of repeating
tags that might result in multiple solutions.

To overcome this limitation, in this chapter we augment each node q in the
prefix tree (NFA) with a stack Sq. These stacks Sq efficiently keep track of all
matches in the input document from the root to a given document node. Each
element in the stack is a pair: (node from the XML document, pointer to a
position in the parent stack). At every point during the computation of the
algorithm, the following properties hold:

1 The nodes in Sq (from bottom to top) are guaranteed to lie on a root-to-leaf
path in the XML document.

2 The set of stacks contains a compact encoding of partial and total matches
to the path query, which can represent in linear space a potentially ex-
ponential (in the number of query nodes) number of answers to the path
query.

XML & Data Streams 69

Given a chain of stacks in a leaf-to-root path in the prefix tree, corresponding
to some input query, the following recursive property allows us to extract the
set of matches that are encoded in the stacks: given a pair (tq,pq) in stack Sq,
the set of partial matches using tag tq that can be extracted from the stacks is
found by extending tq with either the partial matches that use the tag pointed by
Pq in Sparen^) or any tag that is below pq in stack Sparentfo)- The following
example clarifies this property.

EXAMPLE 4.4 Consider again Figure 4.4. The set of all matches for the NFA
in Figure 4.4(a) is shown in Figure 4.5(a). Figure 4.5(b) shows the chain of
stacks for query Qs and the stack encoding for the document fragment at the
point that D\ is processed. The match [A2, C2, D\\ is encoded since D\ points
to C2, andC2points to A2. Since A\ is below A2 on SA, [AL, C2, D\] is also
encoded. Finally, since C\ is below C2 on Sc andC\points to Ai, [Ai, C\, D\]
is also encoded. Note that [A2, Ci, DjJ is not encoded, since A2 is above the
node (A\) on SA to which C\ points.

It can be shown that in order to maintain the stacks in the NFA we need
to proceed as follows: (i) eveiy time an open tag % is read and consequently
some state n becomes active due to a transition from state rip, we push into
n's stack t0 along with a pointer to the top of rip's stack; and (ii) every time a
close tag tc is read and the top of the (global) run-time stack structure contains
states {ri\,..., n^}, we pop the top element from the stacks, associated with
states rii, that were modified when the corresponding open-tag ^ was read. It is
important to note that the stacks are shared among queries in the prefix-tree. In
fact, we only need one stack per state in the NFA to represent all partial matches
of the queries that share such state. We refer to [Bruno et al., 2002] for more
details about maintaining compact solutions using stacks.

In conclusion, our modification to the original Y-Filter algorithm allows us to
return not only the queries that have at least one match in the document, but all
its matches. Moreover, this can be done by using a limited amount of memory
(proportional to the height of the input XML document and the number of active
states). We present now an alternative technique to return the set of all matches
for the given input queries that is based on a different design principle: the use
of index information over the input XML document.

3.3 Index-Filter: An Index-Based Approach
In this section we present Index-Filter, a technique to answer multiple path

queries by exploiting indexes that provide structural information about the tags
in the XML document. By taking advantage of this additional information,
Index-Filter is able to avoid processing certain tags in the document that are
guaranteed not to be part of any match. We first discuss the index structure that
we use in Index-Filter, and then we present the main algorithm.

70 STREAM DATA MANAGEMENT

3.3.1 Indexing XML Documents. We now describe how to extend the
classic inverted index data structure used in information retrieval [Salton and
McGill, 1983] to provide a positional representation of elements and values in
the XML document. This representation was introduced in [Consens and Milo,
1994] and has been used in [Zhang et al., 2001; Li and Moon, 2001; Bruno et al.,
2002; Chienetal., 2002; Jiang etal., 2003b] for matching XML path queries. As
we will see, this representation allows us to efficiently check whether two tags
in the XML documents are related by a parent/child or ancestor/descendant
structural relationship. The position of an element occurrence in the XML
document is represented as the pair (L:R,D) where L and R are generated by
counting word numbers from the beginning of the document to the start and the
end of the element being indexed, respectively, and D is the nesting depth of the
element in the document (see Figure 4.1 for examples of pairs associated with
some tree nodes based on this representation).

We can easily determine structural relationships between tree nodes using this
indexing scheme. Consider document nodes n\ and 712, encoded as (Li: Ri, Di)
and (L2: R2,D2)> respectively. Then, n\ is an ancestor of n^ (and ni is a
descendant of n{) if and only if Li < L2 and R2 < Ri- To check whether n\ is
the parent of n<i (ji'i is a child of ni) we also need to verify whether Di+1=D2.

EXAMPLE 4.5 Consider the XML fragment in Figure 4.L The author node
with position (6:13, 3) is a descendant of the book node with position (1:150,
1), since Lbook = 1 < 6 = ^author, and .Rauthor = 13 < 150 = -Rbook-
Also, the author node just mentioned is the parent of the f n node with position
(7:9, 4), since Lauthor = 6 < 7 = Lfn, Rfn = 9 < 13 = Author, and
Dfn = 4 = 3 + 1 = £>author + 1.

An important property of this positional representation is that checking an
ancestor-descendant relationship is computationally as simple as checking a
parent-child relationship, i.e., we can check for an ancestor-descendant struc-
tural relationship without knowledge of intermediate nodes on the path.

We now introduce the Index-Filter algorithm. Later, in Section 3.3.3 we
address the issue of how to efficiently materialize a set of indexes for a given
XML document.

3.3.2 Algorithm Index-Filter. Based on the representation of positions
in the XML document described above, we now present the Index-Filter algo-
rithm. Analogously to the case of Y-Filter, we augment the input prefix tree
structure for Index-Filter. Specifically, before executing Index-Filter, we asso-
ciate with each node q in the input prefix tree the following information: (i) an
index stream Tq, which contains the indexed positions of document nodes that
match q sorted by their L values, (ii) an empty stack Sq as discussed in Sec-
tion 3.2, and (iii) a priority queue Pq that allows dynamic and efficient access to

XML & Data Streams 71

Algorithm Index-Filter (q)
01 while (true) //find candidate node
02 repeat
03 min = getMin(Pg)
04 if (-i/iiiw V (isAccept(g) A nextL(Tmin) >
05 g.knowSolution=true; return
06 while (nextR(Tg) < nextL(Tmin))
07 advance (Tg) // advance g's stream
08 if (eof(Tmjn)) g.knowSolution=false; return
09 while (-iempty(59) A topK(Sq) < nextL(Tmjn))
10 pop(5g) // clean g's stack
11 while (nextL(Tw/>2) < skipToL(g))
12 advance (Tmin)
13 min. knowSolut ion=false
14 knewSolution= mm. knowSolut ion
15 if (-ijmrc.knowSolution) Index-Filter(wm)
16 until (knewSolution)
17 // process candidate node
18 if (nextL(Tmz>7) > nextL(Tg))
19 g.knowSolution= true
20 return
21 else
22 pushCS^ , (next(Tm/ /7),^r.top(^)))
23 if (isAccept(mm))
24 outputSolutions{min)
25 advance(Tmjn); if (isLeaf (min)) pop(Smin)
26 Index-Filter (mm)
27 end while

Function skipToL(g)
01 if (empty(Sq)) return nextL(Tq)
02 else return topL(5'g)

Figure 4.6. Algorithm Index-Filter.

72 STREAM DATA MANAGEMENT

the child of q having the smallest L value in its stream. To ensure correctness,
initially we add the index entry (—00 : +00,0) to the stack SrOOt.

In the rest of the section, the concepts of a prefix tree and its root node are
used interchangeably. We denote the current element in stream 7^ as the head
ofTq, and we access the head's L and R components by the functions nextL and
nextR, respectively (if we consume Tq entirely, nextL(Tg)=nextR(Tg)=+oo).
Similarly, we access the L and R components of the top of Sq by the functions
topL and topR, respectively. We now describe Index-Filter, which is shown
in pseudocode in Figure 4.6.

We execute Index-Filter (q) to get all the answers for the prefix tree rooted at
q. The algorithm's invariant ensures that after executing Index-Filter (q), we are
guaranteed that either (1) 7^'s head participates in a new match when all struc-
tural relationships are regarded as ancestor/descendant (outputSolut ions in
line 24 will later enforce the appropriate relationships); or otherwise (2) the
stream Tq is consumed entirely. Additionally, we can guarantee that for all
descendants qf of q in the prefix tree, every index entry in Tq> with L compo-
nent smaller than nextL(Tg) was already processed. To avoid redundant com-
putations, we memorize this property by carefully manipulating the boolean
variable g.knowSolution: if q.knowSolution=true, we know that Tqs head
participates in at least one new match; otherwise all we can say is that 2^'s
head might participate in a new match, but we do not know for sure (ini-
tially, g.knowSolution is set to false for every node q). The algorithm iterates
through two phases until all matches are returned. In the first phase (lines 2-16),
we identify rain, the child of q with the minimal L value in its stream's head
that participates in some match. In the second phase (lines 17-26), we process
rnin depending on the actual relationship with Tq's head. We now give some
details on each phase.

To identify rnin, we first use the priority queue Pq to select the child of q with
the smallest stream head (line 3). Lines 4-5 cover the special case that node q is
a leaf node in the prefix tree (so q has no children and there is no rain child), or
q is an internal node in the prefix tree but some queiy has q as its accept state and
q's position ends before the position of any of g's children. In such cases, we
simply update g.knowSolution = true and return. Otherwise, in the general
case, if Tm?n's head starts after 7^'s head ends, we can guarantee that no new
match can exist for Tg's head, so we advance Tq (see Figure 4.7(a)). At this
point, if Tmin is consumed entirely, we know that there are no new solutions
for q so we return (line 8). Otherwise, we clean from q's stack all elements
that cannot participate in any new match, i.e., those elements in Sq whose R
component is smaller than the L component of Tmin's head (see Figure 4.7(b)).
After that, we compute the value skipToL, which is the smallest L value for
a node from q for which a new match can exist. If 2Jmn's head starts before
skipToL, we know that Tm^n's head cannot participate in any new match, so

XML & Data Streams 73

a d v a n c e (T) H
; . p o p (S]

(3) Lines 6-7 (b) Lines 9-10

jskipToL • skipToL jnextL (Tq)
! • (could be1 skipToL)

advance (Tmin)
(reset knowSol)

(C)Lines 11-13

T case 1
•mln I 1

push Tmin to Smin, set q.knowSol
advance Tmin and call and return
indexFilter(min)
((J) Lines 21-26 Lines 18-19

Figure 4.7. Possible scenarios in the execution of Index-Filter.

we advance Tmin (see Figure 4.7(c)). In such a case, we need to reset the value
min.knowSolution (line 13), since we can no longer guarantee that 3J^n's
head participates in a new match after advancing Tmin in line 12. At this point,
in line 15, if we cannot guarantee that 2 ^ n ' s head participates in a match
(i.e., min. knowSolut ion = false), we recursively call Index-Filter {min).
After we return from this recursive call, we can guarantee (from the algorithm's
invariant) than Tm^n's head participates in a new match. However, Tmin could
have been advanced in the recursive call, so we cannot guarantee that min is the
children ofq with the minimal value of L participating in a match. Therefore, we
only continue with the second phase if we could guarantee that min participated
in a match before the recursive call (see lines 14 and 16). Otherwise, we simply
repeat the procedure of finding the minimal child of q with a match (of course,
in the next iteration node min could be the minimal one, although it is not
always the case).

When we enter the second phase, we can guarantee that Tmin's head partic-
ipates in some match and its position relative to q can be just one of the two
cases of Figure 4.7(d). In the case that Tmin's head starts after Tq

9s head (case
2 in Figure 4.7(d)), we know that Tq's head participates in a match as well, so
we set q.knowSolut ion and return (lines 19-20). Otherwise (case 1 in Fig-
ure 4.7(d)), Tmin

9s head ends before Tq's head starts but participates in a match
with nodes in Sq. Therefore, we need to process node min before returning
with any match for Tg's head. We first push Trn/;n's head to Smin, and if some
query has min as its accept node, we expand the new matches from the chain
of stacks. Finally, in preparation for the next iteration, we advance %iin and
recursively call Index-Filter {min) to process any remaining entries from the
subtree rooted at min.

74 STREAM DATA MANAGEMENT

„ (l) open A, fill Rvalues
A (2) open ^ in post-order ?ort

/ \ (3) Open B, JlsS ^ ^

CD, (6) ° P e n "i
^ 2 (7) c lose Ex

Q (8) Close B2
1 (9) Open C2

C x (4 : ? , 4)
^ 3 : ? , 3)

^ (2 : 7 , 2)

^ 1
£^5:5,4) ^(2:10,2)
6^3:6,3) 6^3:6,3)
0^8:8,4) B2(ll:13,2)
C2(7:9,3) ^(4:4 ,4)

XML document SAX-based parser Stack Intermediate results Final indexes

Figure 4.8. Materializing the positional representation of XML nodes.

3.3.3 Building Indexes. When analyzing the Index-Filter algorithm in
the previous section, we assumed that the required indexes were already pre-
computed and available to Index-Filter. We now give more details on how to
efficiently materialize a set of indexes given an input XML document. Con-
ceptually, we can assign the positional representation of the nodes in the XML
document by traversing the XML tree in preorder as explained next. We main-
tain a global counter and increment it every time we move to a new node (either
by moving to a new child or when returning to the parent node after traversing
all of its subtrees). Whenever we reach a node for the first time, we assign the
current value of the counter to the L component of the positional representation,
and when we leave a node after traversing all its subtrees we assign the current
value of the counter to the R component of the positional representation (the D
component of the positional representation is easily derived from the number
of ancestors of each node). We now present a concrete implementation of this
procedure that uses little main memory and scales gracefully with the size of
the input XML document. The general procedure to obtain the indexes for the
nodes of the XML document consists of two steps that can be summarized as
follows (see Figure 4.8):

1 Use a SAX-based parser on the input XML tree. The i-th tag found
(irrespective of whether it is a start- or an end-tag) receives integer i as its
identifier.5 Every time we parse a start-tag, we push into a global stack
the value of the tag along with its identifier, which becomes the L value
for the node, and the level value, which is simply the current number
of elements in the stack. (Figure 4.8 shows a snapshot of the execution
right after parsing the start-tag for node C\.) On the other hand, every
time we parse an end-tag, we know (assuming the XML document is
well-formed) that the top element in the stack has the information of the
corresponding start-tag, so we pop the top of the stack, assign the current
identifier to the R component, and output the index entry to a temporary
file.

XML & Data Streams 75

2 The order of the tags in the intermediate file produced in the previous
step would match that of a post-order traversal of the XML tree (in par-
ticular, the different tags are not even grouped together). As seen in the
description of Index-Filter (Section 3.3) a crucial property of the index
entries for a given tag is that they are sorted by L value. For that reason,
in the second step we sort the intermediate file by (tag, L). Tn that way,
all tags are grouped together and sorted by their L value, as desired (see
Figure 4.8).

To provide efficient access to the indexes of individual tags, we build a B-tree
over the tags. Throughout the index-building process, and with the exception
of the sorting phase, memory requirements are proportional to the height of the
XML tree to maintain the stack. Interestingly, the memory requirements are
independent of the size of the XML tree.

Main Memory Optimization. It turns out that if the whole document and
the indexes fit in main memory, we can build the indexes without the sorting
step. The intuition is to use growing arrays in memory to hold the index for each
tag separately. Eveiy time we parse a start-tag, we append a new index entry
to the corresponding tag array with the L and D entries as before (the R entry
remains unknown). We still use a global stack, but this time we just store in
it pointers to index entries in the arrays, which still contain unknown R values.
When we parse an end-tag, we pop the top pointer from the stack and update
the corresponding index entry in the array with the R value as explained before.
This way, each index is created independently and in the right order, so there is
no need to sort any intermediate result.

3,4 Summary of Experimental Results
Both Index-Filter and the enhanced Y-Filter have their advantages. In par-

ticular, in [Bruno et al., 2003], we experimentally show that:

• When the number of queries is small, or the XML document is large,
Index-Filter is much more efficient than Y-Filter if the required indexes
are already materialized, due to the focused processing achieved by the
use of indexes.

• When we also consider the time spent for building indexes on the XML
document on the fly, the trends remain the same, but the gap between the
algorithms is reduced.

• For a very large number of queries, and small documents, Y-Filter is more
efficient due to the scalability properties of Y-Filter's hash tables.

76 STREAM DATA MANAGEMENT

4. Related Work
XPath [Boag et al., 2004a] and XQuery [Boag et al., 2004b] are the main

XML query languages. Their efficient implementation and evaluation has been
the subject of considerable recent research, both for XML databases and stream-
ing XML applications.

4.1 XML Databases
XML data and issues in their storage, query evaluation, query optimization,

etc., has attracted a lot of attention in the context of semistructured and XML
databases. In particular, substantial early work on query processing on such
data was done for the Lore system [McHugh et al., 1997] and the Niagara
system [Naughton et al., 2001]. Various issues in their storage and query
processing using relational DBMSs have been considered in, among others,
[Florescu and Kossmann, 1999; Fernandez et al., 2000; Fiebig and Moerkotte,
2000; Shanmugasundaram et al., 2000; Yoshikawa et al., 2001; DeHaan et al.,
2003]. In these papers, the authors considered different ways of mapping XML
data to a number of relational tables, along with a translation of XML queries
to SQL queries.

Recognizing the inadequacy of traditional relational join algorithms for effi-
ciently processing XML queries, [Zhang et al:, 2001; Li and Moon, 2001; Al-
Khalifa et al., 2002; Bruno et al., 2002; Chien et al., 2002; Jiang et al., 2003b],
among others, introduced various novel join algorithms as primitives for match-
ing structural (edge, path, twig) queries against an XML document. In particu-
lar, [Zhang et al., 2001; Li and Moon, 2001; Al-Khalifa et al., 2002; Chien et al.,
2002] proposed binary structural join algorithms as primitives for matching twig
queries. The algorithms in [Bruno et al., 2002; Jiang et al., 2003b] are general-
izations of the binary structural join algorithms to holistically match path and
twig queries. The main contribution of these holistic algorithms is that no large
intermediate results are generated for complex path or twig queries, eliminating
the need for an optimization step that was needed when stitching together partial
results from the binary structural join algorithms. Our Index-Filter algorithm of
Section 3.3 is loosely based on the PathStack technique of [Bruno et al., 2002].

These join algorithms typically rely on numbering schemes that represent
the positions of XML elements, as discussed in Section 3.3.1. Such numbering
schemes were used in [Consens and Milo, 1994], who considered a fragment
of the PAT text searching operators for indexing text databases, and computing
containment relationships between "text regions" in the text databases.

Complementing the work on structural join algorithms has been the devel-
opment of a variety of index structures to find matches to individual XPath axes
(see, e.g., [Gmst 2002; Jiang et al., 2003a]), to paths in an XML document (see,

XML & Data Streams 11

e.g., [Cooper et al., 2001; Chung et al., 2002]), and to twigs (see, e.g., [Wang
et al., 2003; Rao and Moon, 2004]).

4.2 Streaming XML
[Altinel and Franklin, 2000; Chan et al., 2002; Diao et al., 2003; Ives et al.,

2002; Lakshmanan and Parthasarathy, 2002; Peng and Chawathe, 2003; Green
et al., 2003; Barton et al., 2003; Gupta and Suciu, 2003] proposed various
navigation-based techniques to match single and multiple, path and twig queries.
These works assume the fine granularity model of streaming, as discussed in
Section 2.3. In particular, [Ives et al., 2002] introduced the X-Scan operator,
which matches path expression patterns over a streaming (non-materialized)
XML document and [Peng and Chawathe, 2003] explores single query evalua-
tion against streaming XML documents using transducers. References [Altinel
and Franklin, 2000; Diao et al., 2003] consider the problem of answering multi-
ple path queries over incoming documents. The algorithms and data structures
in both [Altinel and Franklin, 2000] and [Diao et al., 2003] are tailored for the
case of very large numbers of queries and small input documents. While [Al-
tinel and Franklin, 2000] uses separate finite state machines to represent each
query, [Diao et al., 2003] compresses the set of input queries by sharing prefixes,
as explained in Section 3.1. Reference [Chan et al., 2002] proposes a trie-based
data structure, called XTrie, to support filtering of complex twig queries. The
XTrie, along with a sophisticated matching algorithm, is able to reduce the
number of redundant matchings.

We note that the query model in [Altinel and Franklin, 2000; Diao et al., 2003;
Chan et al., 2002] is slightly different from ours. They are mainly concerned
with queries for which at least one match exists (therefore several optimizations
are available to avoid processing queries beyond their first match). In contrast,
in Index-Filter, we are interested in returning the set of all matches for each input
query. Finally, [Lakshmanan and Parthasarathy, 2002] addresses the problem
of obtaining all matches for a set of path and tree queries. The algorithms use
an index structure, denoted the "requirements index", which helps to quickly
determine the set of queries for which a certain structural relationship (e.g.,
parent-child, ancestor-descendant) is relevant. The main difference with our
query model is that in [Lakshmanan and Parthasarathy, 2002] each input query
identifies a unique "distinguished" query node, so the result matches are 1-ary
relations. The algorithms in [Lakshmanan and Parthasarathy, 2002] make at
most two passes on the input document, and provide performance guarantees
on the number of I/O invocations required to find the resulting matches.

78 STREAM DATA MANAGEMENT

4.3 Relational Stream Query Processing
There is a vast body of recent work in the area of relational stream query pro-

cessing (see, e.g., [Babcock et al., 2002; Koudas and Srivastava, 2003], and the
references therein). While much of the research in relational and XML stream
query processing has proceeded independently, the tutorial slides of [Koudas
and Srivastava, 2003] explored preliminary connections between these fields.
Tn particular, under the fine granularity model of XML streams, (1) numbers
can be associated with start and end tags, and with values, such that the stream
of XML tokens can be viewed as multiple homogeneous relational streams (for
start tags, text values, and end tags); (2) path and twig matching on the XML
streams can be modeled as multi-way joins (with arithmetic conditions on the
numbers mentioned above) over the relational streams; and (3) the XML end
tags have a natural correspondence with explicit punctuations used in relational
streams (see, e.g., [Tucker et al., 2003]), to identify "end of processing".

There have been many join algorithms proposed for relational stream query
processing (see, e.g., [Kang et al., 2003; Viglas et al., 2003; Golab and Ozsu,
2003]). While these algorithms could, in principle, be used for matching XML
paths based on the above correspondences, they are not as efficient as the spe-
cialized streaming algorithms proposed for matching XML paths and twigs.
How this gap can be bridged is an interesting direction of future work.

5. Conclusions
We surveyed algorithms to answer multiple path queries over XML docu-

ments efficiently. In particular, we reviewed Y-Filter, a state-of-the-art
navigation-based algorithm. Y-Filter computes results by analyzing an input
document stream one tag at a time, typically by using SAX-based parsers. We
extended Y-Filter's original formulation so that it returns all matches for the
set of input queries. We also presented an index-based algorithm, Index-Filter,
which avoids processing portions of the XML document that are guaranteed
not to be part of any match. Index-Filter takes advantage of precomputed in-
dexes over the input document, but can also build the indexes on the fly. Both
techniques have their advantages. In particular, while most XML stream query
processing techniques work off SAX events, in some cases it pays off to parse
the input document in advance and augment it with auxiliary information that
can be used to evaluate the queries faster.

Notes
1. XQuery path queries permit other axes, such as following and preceding, which we do not consider

in this chapter.
2. Actually, an XQuery path query is a 1-ary projection of this n-ary relation. Compositions of path

queries need to be used (as in the XQuery FOR clause) to obtain an n-ary relation. To allow for this generality,
while keeping the exposition simple, we identify the path query answer with the n-ary relation.

XML & Data Streams 79

3. Actually, Y-Filter uses a slightly different representation of the prefix tree, but we omit details to
simplify the presentation.

4. The actual implementation of Y-Filter's NFA is slightly more complex than described above, to
address a special situation. In particular, when a given state has two children with the same tag but different
structural relationships (child and descendant), a new intermediate state is added to the NFA to differentiate
between the two transitions.

5. To keep the presentation simple, we treat values, such as 'Jane' or 'XML', as if they were composed
of adjacent pairs of open- and close-tags, e.g., <Jane></Jane>, but we assign the same integer to both the
open- and close-tags.

References
Mehmet Altinel and Michael J. Franklin. Efficient filtering of XML doc-

uments for selective dissemination of information. Tn Proceedings of VLDB,
2000.

Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh M. Patel, Divesh
Srivastava, and Yuqing Wu. Structural joins: A primitive for efficient XML
query pattern matching. In Proceedings oflCDE, 2002.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In Proceedings of ACM
PODS, 2002.

Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay, Jonathan
Robie, and Jerome Simeon. XML path language (XPath) 2.0. W3C Working
Draft Available from
http://www.w3.org/TR/xpath20, July 2004.

Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan
Robie, and Jerome Simeon. XQuery 1.0: An XML query language. W3C
Working Draft. Available from
http://www.w3.org/TR/xquery, July 2004.

Charles Barton, Philippe Charles, Deepak Goyal, Mukund Raghavachari,
Marcus Fontoura, and Vanja Josifovski. Streaming XPath processing with
forward and backward axes. In Proceedings oflCDE, 2003.

Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins:
Optimal XML pattern matching. In Proceedings ofACMSJGMOD, 2002.

Nicolas Bruno, Luis Gravano, Nick Koudas, and Divesh Srivastava.
Navigation-vs. index-based XML multi-query processing. In Proceedings
of ICDE, 2003.

Chee Yong Chan, Pascal Felber, Minos Garofalakis, and Rajeev Rastogi.
Efficient filtering of XML documents with XPath expressions. In Proceedings
of ICDE, 2002.

Mariano P. Consens and Tova Milo. Optimizing queries on files. In Pro-
ceedings ofACMSIGMOD, 1994.

Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. APEX: An adaptive path
index for XML data. In Proceedings ofACMSIGMOD, 2002.

80 STREAM DATA MANAGEMENT

Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, and
Moshe Shadmon. A fast index for semistructured data. In Proceedings of
VLDB, 2001.

Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras,
and Carlo Zaniolo. Efficient structural joins on indexed XML documents. In
Proceedings of VLDB, 2002.

David DeHaan, David Toman, Mariano P. Consens, and M. Tamer Ozsu. A
comprehensive XQuery to SQL translation using dynamic interval encoding.
In Proceedings ofACMSIGMOD, 2003.

Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang, and Peter
M. Fischer. Path sharing and predicate evaluation for high-performance XML
filtering. ACM TODS, 28(4), 2003.

Daniela Florescu and Donald Kossmann. Storing and querying XML data
using an RDBMS. IEEE Data Engineering Bulletin, 22(3), 1999.

Thorsten Fiebig and Guido Moerkotte. Evaluating queries on structure with
extended access support relations. In Proceedings ofWebDB, 2000.

Mary F. Fernandez, Wang Chiew Tan, and Dan Suciu. SilkRoute: Trading
between relations and XML. Computer Networks, 33(1-6), 2000.

Torsten Grust. Accelerating XPath location steps. In Proceedings of ACM
SIGMOD, 2002.

Todd J. Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. Processing
XML streams with deterministic automata. In Proceedings oflCDT, 2003.

Lukasz Golab and M. Tamer Ozsu. Processing sliding window multi-joins
in continuous queries over data streams. In Proceedings of VLDB, 2003.

Ashish Kumar Gupta and Dan Suciu. Stream processing of XPath queries
with predicates. In Proceedings ofACMSIGMOD, 2003.

Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. An XML query engine
for network-bound data. VLDB Journal, 11(4), 2002.

Haifeng Jiang, Hongjun Lu, Wei Wang, Beng Chin Ooi. XR-Tree: Indexing
XML data for efficient structural joins. In Proceedings oflCDE, 2003.

Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu. Holistic twig
joins on indexed XML documents. In Proceedings of VLDB, 2003.

Jaewoo Kang, Jeffrey F. Naughton, and Stratis Viglas. Evaluating window
joins over unbounded streams. In Proceedings oflCDE, 2003.

Nick Koudas and Divesh Srivastava. Data stream query processing: a tuto-
rial. In Proceedings of VLDB, 2003.

Laks V. S. Lakshmanan and Sailaja Parthasarathy. On efficient matching of
streaming XML documents and queries. In Proceedings ofEDBT, 2002.

Quanzhong Li and Bongki Moon. Indexing and querying XML data for
regular path expressions. In Proceedings of VLDB, 2001.

XML & Data Streams 81

Jason McHugh, Serge Abiteboul, Roy Goldman, Dalian Quass, and Jen-
nifer Widom. Lore: A database management system for semistructured data.
SIGMOD Record, 26(3), 1997.

Jeffrey F. Naughton, David J. DeWitt, David Maier, Ashraf Aboulnaga, Jian-
jun Chen, Leonidas Galanis, Jaewoo Kang, Rajasekar Krishnamurthy, Qiong
Luo, Naveen Prakash, Ravishankar Ramamurthy, Jayavel Shanmugasundaram,
Feng Tian, Kristin Tufte, Stratis Viglas, Yuan Wang, Chun Zhang, Bruce Jack-
son, Anurag Gupta, and Rushan Chen. The Niagara Internet query system.
IEEE Data Engineering Bulletin, 24(2), 2001.

Feng Peng and Sudarshan S. Chawathe. XPath queries on streaming data.
In Proceedings of ACM SIGMOD, 2003.

Joao Pereira, Francoise Fabret, Hans-Arno Jacobsen, Francois Llirbat, and
Dennis Shasha. WebFilter: A high throughput XML-based publish and sub-
scribe system. Proceedings ofVLDB, 2001.

Praveen Rao and Bongki Moon. PRIX: Indexing and querying XML using
Prufer sequences. In Proceedings oflCDE, 2004.

Gerard Salton and Michael J. McGill. Introduction to modern information
retrieval McGraw-Hill, 1983.

Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J.
Carey, Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficiently
publishing relational data as XML documents. In Proceedings ofVLDB, 2000.

Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Exploiting
punctuation semantics in continuous data streams. IEEE TKDE, 15(3), 2003.

Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output
rate of multi-way join queries over streaming information sources. In Proceed-
ings of VLDB, 2003.

Haixun Wang, Sanghyun Park, Wei Fan, and Philip S. Yu. ViST: a dynamic
index method for querying XML data by tree structures. In Proceedings of
ACMSIGMOD, 2003.

Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and Shun-
suke Uemura. XRel: a path-based approach to storage and retrieval of XML
documents using relational databases. ACMTOIT, 1(1), 2001.

Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.
Lohman. On supporting containment queries in relational database manage-
ment systems. In Proceedings of SIGMOD, 2001.

Chapter 5

CAPE: A CONSTRAINT-AWARE ADAPTIVE
STREAM PROCESSING ENGINE

Elke A. Rundensteiner, Luping Ding, Yali Zhu, Timothy Sutherland and Brad-
ford Pielech
Computer Science Department
Worcester Polytechnic Institute (WPI)
{rundenst, lisading, yaliz, tims, winners}@cs.wpi.edu

1. Introduction
1.1 Challenges in Streaming Data Processing

The growth of electronic commerce and the widespread use of sensor net-
works has created the demand for online processing and monitoring applica-
tions [Madden and Franklin, 2002; Stream Repository; Tucker et al., 2003].
In these applications, data is no longer statically stored. Instead, it becomes
available in the form of continuous streams. Furthermore, users often ask long-
running queries and expect the results to be delivered incrementally in real time.
Traditional query execution techniques, which assume finite persistent datasets
and aim for producing a one-time query result, become largely inapplicable in
this new stream paradigm due to the following reasons:

• The data streams are potentially infinite. Thus the existence of blocking
operators in the query plan, such as group-by, may block queiy execution
indefinitely because they need to see all input data before producing a re-
sult. Moreover, stateful operators such as join may require infinite storage
resources to maintain all historical data for producing exact results.

• Data streams are continuously generated at query execution time. Meta
knowledge about streaming data, such as data arrival patterns or data
statistics, is largely unavailable at the initial query optimization phase.
Therefore the initial processing decisions taken before query execution
commences, including the query plan structure, operator execution algo-
rithm and operator scheduling strategy, may not be optimal.

84 STREAM DATA MANAGEMENT

• Stream environments are usually highly dynamic. For example, the data
arrival rates may fluctuate dramatically. Moreover, as other queries are
registered into or removed from the system, the computing resources
available for processing may vary greatly. Hence an optimal query plan
may become sub-optimal as it proceeds, requiring run-time query plan
restructuring and in some cases even across-machine plan redistribution.

It is apparent that novel strategies must be found to tackle the evaluation of
continuous queries in such highly dynamic stream environments. In particular,
this raises the need to offer adaptive services at all levels of query processing.
The challenge is to cope with the variations in both stream environment and
system resources, while still guaranteeing the precision and the timeliness of
the query result. This is exactly the challenge that the stream processing system
introduced in this chapter, named CAPE (for Constraint-Aware Adaptive Stream
Processing Engine) [Rundensteiner et al., 2004], tackles.

1.2 State-of-the-Art Stream Processing Systems
Many existing stream processing systems have begun to investigate vari-

ous aspects of adaptive query execution. STREAM [Motwani et al., 2003]
for instance applies runtime modification of memory allocation and supports
memory-minimizing operator scheduling policies such as Chain [Babcock et al.,
2003]. Aurora [Abadi et al., 2003] supports flexible scheduling of operators
via its Train scheduling technique [Carney et al., 2003]. It also employs the
load shedding when an overload is detected. In [Cherniack et al., 2003], they
point towards ideas for developing a distributed version of the Aurora and
Medusa systems, including fault tolerance, distribution and load balancing.
TelegraphCQ [Chandrasekaran et al., 2003] provides a very fine-grained adap-
tivity by routing each tuple individually through its network of operators. While
offering maximal flexibility, this comes with the overhead of having to manage
the query path taken on an individual tuple basis and of having to recompute
intermediate results.

These systems also consider the constraint-exploiting query optimization,
in particular, they all incorporate various forms of sliding window semantics
to bound the state of stateful operators. In addition, the STREAM system
also exploits static k-constraints to reduce the resource requirements [Babu and
Widom, 2004]. However, none of these systems considers punctuations which
can be used to model both static and dynamic constraints in the stream context.
Further optimization opportunities enabled by the interactions between different
types of constraints are also not found in these systems.

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 85

1.3 CAPE: Adaptivity and Constraint Exploitation
In this chapter, we will describe CAPE, a Constraint-Aware Adaptive Stream

Processing Engine [Rundensteiner et al., 2004], that we have developed to ef-
fectively evaluate continuous queries in highly dynamic stream environments.
CAPE adopts a novel architecture that offers highly adaptive services at all
levels of query processing, including reactive operator execution, adaptive op-
erator scheduling, runtime query plan restructuring and across-machine plan
redistribution. In addition, unlike other systems that under resource limitation
duress load shedding and thus affect the accuracy of the query result [Abadi
et al., 2003], CAPE instead focuses on maximally serving precise results by
incorporating optimizations enabled by a variety of constraints. For instance,
the CAPE operators are designed to exploit dynamic constraints such as punc-
tuations [Ding et al., 2004; Tucker et al., 2003] in combination with time-
based constraints such as sliding windows [Carney et al., 2002; Hammad et al.,
2003; Kang et al., 2003; Motwani et al., 2003] to shrink the runtime state and
to produce early partial results.

This chapter now describes four core services in CAPE that are constraint-
exploiting and highly adaptive in nature:

• The constraint-exploiting reactive query operators exploit constraints to
reduce resource requirements and to improve the response time. These
operators employ an adaptive execution logic to react to the varying
stream environment.

• The introspective execution scheduling framework adaptively selects one
algorithm from a pool of scheduling algorithms that helps the query to
best meet the optimization objectives.

• The online query plan reoptimization and migration restructures the
query plan at runtime to continuously converge to the best possible route
that input data goes through.

• The adaptive query plan distribution framework balances the queiy pro-
cessing workload among a cluster of machines so to maximally exploit
available CPU and memory resources.

We introduce the CAPE system in Section 2. The design of the CAPE query
operators is described in Section 3. Sections 4, 5 and 6 present our solutions
for operator scheduling, online plan reoptimization and migration, and plan
distribution respectively. Finally, we conclude this chapter in Section 7.

2. CAPE System Overview
CAPE embeds novel adaptation techniques for tuning different levels of

query evaluation, ranging from intra-operator execution, operator scheduling,

86 STREAM DATA MANAGEMENT

query plan structuring, to plan distribution. Each level of adaptation is able
to yield maximally optimized performance in certain situations by working on
their own. However, none of them is able to handle all kinds of variations
that may occur in a stream environment. In addition, the improper use of all
levels of adaptation may cause either optimization counteraction or oscillating
re-optimizations, which should both be avoided. Hence an important task is
to coordinate different levels of adaptations, guiding them to function properly
on their own and also to cooperate with each other in a well-regulated man-
ner. CAPE not only incorporates novel adaptation strategies for all aspects of
continuous query evaluation, but more importantly, it employs a well-designed
mechanism for coordinating different levels of adaptation.

CAPE Query Engine

QoS Inspector

Operator
Configurator

Operator
Scheduler

Plan
Reoptimizer

Execution Engine

Stream
Feeder

Stream
Receiver

End User

Distribution
Manager

Query Plan
Generator

Stream /Query
Registration

GUI

Query 1 Query 2 . . Query n

Legend:
Control Flow-

Figure 5.7. CAPE System Architecture.

In the system architecture depicted in Figure 5.1, the key adaptive compo-
nents are Operator Configurator, Operator Scheduler, Plan Reoptimizer and
Distribution Manager. Once the Execution Engine starts executing the query
plan, the QoS (Quality of Service) Inspector will regularly collect statistics
from the Execution Engine at each sampling point. All the above four adaptive
components then use these statistics along with QoS specifications to determine
if they need to adjust their behavior.

To synchronize adaptations at all levels, we have designed a heterogeneous-
grained adaptation schema. Since these adaptations deal with dissimilar run-
time situations and have different overheads, they are invoked in CAPE under
different frequencies and conditions. The current adaptation components in

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 87

CAPE and the granularities of adaption are shown in Figure 5.2, with the adap-
tion interval increasing as we go from the inner to the outer layers of the onion
shape.

Figure 5.2. Heterogeneous-grained Adaptation Schema.

The intra-operator adaptation incurs the lowest overhead so that it func-
tions within an operator's execution time slot. Our event-driven intra-operator
scheduling mechanism enables the operators, especially the stateful and block-
ing ones, to adjust their execution at runtime through the Operator Configurator.
The Operator Scheduler is able to adjust the operator processing order after a
run of a single operator or a group of operators, called a scheduling unit. After
a scheduling unit finishes its work, the scheduler will check the QoS metrics for
the operators and decide which operator to run next or even switch to a better
scheduling strategy. This is a novel feature unique to our system. The Plan Re-
optimizer will wait for the completion of several scheduling units and then check
the QoS metrics for the entire query plan residing on its local machine to decide
whether to restructure the plan. The Distribution Manager, which potentially
incoiporates the highest costs in comparison with other adaptive components
due to across-machine data transfers, is invoked the least frequently, i.e., it is as-
signed the longest decision making interval. If a particular machine is detected
to be overloaded, the Distribution Manager will redistribute one or multiple
query plans among the given cluster of machines. While the Plan Reorganizer
migrate the old plan to a new plan structure, the Distribution Manager instead
migrates a query plan from one machine to another machine.

3. Constraint-Exploiting Reactive Query Operators
As described in Section 1.1, uncertainties may exist in many aspects of a

streaming environment, including the data arrival rate, the resource availability,
etc. The operators in CAPE are designed to react to such variations by adapting
their behavior appropriately [Ding et al., 2004]. Moreover, these operators

88 STREAM DATA MANAGEMENT

exploit various constraints to optimize their execution without sacrificing the
precision of the query result [Ding et al., 2003].

In this section we use the design of a join operator as an example to illustrate
the optimization principles inherent in the CAPE operator design. We highlight
in particular two features unique to CAPE: the adaptive operator execution logic
and the exploitation of punctuations.

For clarity of presentation, we use a join over two streams Si<A, B\> and
S2<A, i?2> with the join condition Si .A = 52. A. The schema of the join result
is <A, JBI, B2>. We assume that each tuple or punctuation has a timestamp field
TS that records its arrival time. We also assume that tuples and punctuations in
both streams have a global ordering on their timestamp.

3.1 Issues with Stream Join Algorithm
Pipelined join operators have been proposed for delivering early partial re-

sults in processing streaming data [Haas and Hellerstein, 1999; Mokbel et al.,
2004; Urhan and Franklin, 2000; Wilschut and Apers, 1993]. These operators
build one state per input stream to hold the already-processed data.. As a tuple
comes in on one input stream, it is used to probe the state of the other input
stream. If a match is found, a result is produced. Finally the tuple is inserted
into the state of its own input stream. In summary, this join algorithm completes
the process of each tuple by following the probe-insert sequence.

Some issues may arise with this algorithm. As tuples continuously accumu-
late in the join states, the join may run out of memoiy. To prevent data loss, part
of the state needs to be flushed to disk. This may cause many expensive I/O
operations when we try to join new tuples with those tuples on disk. As more
data is paged to disk, the join execution will be slowed down significantly. In
addition, the join state may potentially consumes infinite storage.

3.2 Constraint-Exploiting Join Algorithm
In most cases it is not necessary to maintain all the historical data in the

states. Constraints such as sliding windows [Carney et al., 2002; Hammad
et al., 2003; Kang et al., 2003; Motwani et al., 2003] or punctuations [Ding
et al., 2004; Tucker et al., 2003] can be utilized by the join to detect and discard
no-longer-needed data from the states. This way the join state can be shrunk
in a timely manner, thereby reducing and even eliminating the need of paging
data to disk.

We first consider the sliding window, a time-range constraint. Assume that
in the join predicate, two time-based windows W\ and W2 are specified on
streams S\ and #2 respectively. A new tuple from S\ can only be joined with
tuples from S2 that arrived within the last W2 time units. So can new tuples from
S2. Hence the join only needs to keep tuples that have not yet expired from the

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 89

window. Any new tuple from one stream can be used to remove expired tuples
from the other stream. Accordingly, the probe-insert execution logic should be
extended to add a third operation that invalidates tuples based on the sliding
window constraints.

Punctuations are value-based constraints embedded inside a data stream.
A punctuation in a stream is expressed as an ordered set of patterns, with
each pattern corresponding to one attribute of the tuple from this stream. The
punctuation semantics define that no tuple that arrives after a punctuation will
match this punctuation. As the join operator receives a punctuation from one
stream, it can then purge all already-processed tuples from the other stream that
match this punctuation because these tuples no longer contribute to any future
join results. In response, a new operation, namely purge, that discards tuples
according to punctuations, needs to be added into the join execution logic.

Below we use an example query in an online auction application to briefly
illustrate how these constraints are used to optimize the evaluation of this query.
As shown in Figure 5.3, in this auction system, the items that are open for
auction, the bids placed on the items and the registered users are recorded in the
Item, BiJand Person streams respectively. When the open duration for a certain
item expires, the auction system can insert a punctuation into the Bid stream to
signal the end of bids for that item, e.g., the punctuation <1082, *, *, *> on
item 1082 in the figure. Figure 5.3 also shows a stream query in CQL language
[Arasu et al., 2003] and a corresponding query plan. For each person registered
with the auction system, this query asks for the count of distinct categories of
all the items this person has bid on within 12 hours of his registration time.

Item
Stream

Bid
Stream

Person
Stream

CQL
Query

item_id | name | desc | category_id | opentime
1082 | Twin Canopy Bed | ... | C01 | Nov-13-03 10:23:00
item id | biddcrid | bid price | bid Jimc
1082 | marlie | 820.00 | Nov-13-03 11:02:00
1080 | ultrasale | 1000.00 | Nov-13-03 11:05:00
1082 jjocelyn | 850.00 | Nov-13-03 11:14:00
< 1082, * , * , * >
p_id | name | email | city | state | reg_timc
P1007 I marlie 1 ... I Chicagoj IL| Nov-13-03 9:37:00
Select P.p_id, count(I.category_id)
From Item I, Bids B, Person [Range 12 Hour] P
Where I.item_id = B.itemid and B.bidder_id = P.p_id
Group by Pp_id, I.category_id

±

C^^bidderJd^pjT^

itemjd

— \

Item Stream Bid Stream Person Stream

Figure 5.3. Example Query in Online Auction System.

In the first join (Ttem txi Bid) in the query plan, when a punctuation is received
from the Bid stream, the tuple with the matching itern.id from the Item stream
can be purged because it will no longer join with any future Bid tuples. The
second join (Si cxi Person) applies a 12-hour window on Person. Tuples from
stream Si can be used to invalidate expired tuples from the Person stream.

90 STREAM DATA MANAGEMENT

Besides utilizing punctuations to optimize their own execution, the operators
can also propagate punctuations to help other operators. In the above example,
when a Person tuple moves out of the window, no more join results will be
produced for this person. A punctuation can then be propagated to trigger
the group-by operator to emit a result for this person. This way the group-by
operator is able to produce real-time results instead of being blocked indefinitely.

3.3 Optimizations Enabled by Combined Constraints
Either punctuation or sliding window can help shrink the join state. We

now show that when they are present simultaneously, further optimizations can
be enabled. Such optimizations are not achievable if only one constraint type
occurs. We first present a theorem as the foundation of these optimizations.

T H E O R E M 5.1 Assume ti is announced by a punctuation to be the last tuple
ever in stream Si that has value a^ for join attribute A. Once ti expires from
the sliding window, no more join results with A—a^ will be generated thereafter.

Based on this theorem, we derive a tuple dropping invariant for dropping
new tuples that won't contribute to the join result. This further reduces the join
workload without compromising the precision of the join result.

DEFINITION 5.2 (Tuple Dropping Invariant.) Let U be the last tuple from
stream Si that ever contains value o^for the join attribute A and let latestTS be
the times tamp of the latest tuple being processed thus far. Drop tuple tjfrom
stream Sj (j ^ i) if UTS < latestTS - Wi andtj.A = UA andtj.TS > latestTS.

purge drop

s, 0 i M ^ " ^ \ p ™ ^ " ^ \ p n S j 03 H
s2 M HKDfizJ M MM ED I EH
0 T T i m e

Tuple Q Punctuation [j Current Window

Figure 5.4. Dropping Tuples Based on Constraints.

Figure 5.4 shows an example of applying the tuple dropping invariant. The
last tuple with join value 8 in stream S-2 expires from the window at time T.
Hence, the tuple dropping invariant is satisfied. In the figure, four tuples in
stream S\ are shown to have join value 8. Three of them arrived before time T
so that they have joined with the matching tuples from Si and have been purged
by the purge operation. Another tuple with this join value is arriving after time
T. This tuple can then be dropped with no need to be processed based on the
tuple dropping invariant.

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 91

Now we consider how the combined constraints assist the punctuation prop-
agation in the join operator. Assume the join receives a punctuation <<\, *>
from Si, which declares that no more tuples from S\ will have value a\ for
attribute A. The join, however, may not be able to immediately output a punctu-
ation <a\, *, *> because tuples with A=a\ are still potentially coming from S2.
This may render future results with A=ai. Only when the join state contains
no tuple with A=ai from stream Si, we can safely output this punctuation.

We observe that without sliding window, we can only propagate punctuations
in a very restrictive case, i.e., punctuations are specified on the join attribute.
When the punctuation on a certain join value has been received from both
streams, we know that all results with this join value have been produced. The
join is then able to propagate this punctuation.

In the presence of both punctuations and sliding windows, a more efficient
propagation strategy can be achieved in the invalidation operation of the join
algorithm. As we invalidate expired tuples from the window, we also invalidate
punctuations. When a punctuation from one stream moves out of the window,
all tuples from this stream that match this punctuation must have all expired
from the window. Therefore the propagation condition is satisfied and this
punctuation becomes propagable. Also note that the punctuations propagated
by this strategy are not necessary to be on the join attribute.

3,4 Adaptive Component-Based Execution Logic
As described in Section 3.2, the join algorithm may involve numerous tasks:

(1) memory join, which probes in-memory join state using a new tuple and
produces results for any matches, (2) state relocation, that moves part of the in-
memory state to disk when running out of memory, (3) disk join, that retrieves
data from disk into memory for join processing, (4) purge, that purges no-longer-
useful data from the state according to punctuations, and (5) invalidation, that
removes expired tuples from the state based on the sliding window.

The frequencies of executing each of these tasks may be rather different due
to performance considerations. Memory join is executed as long as new tuples
are ready to be processed. This guarantees the join result to be delivered as
soon as possible. State relocation is applied only when the memory limit is
reached. This way the I/O operations are reduced to a minimum. Disk join
also involves I/O operations. Hence it is scheduled only when the memory
join cannot proceed due to the delays in data delivery. The purge incurs over-
head in searching for tuples that satisfy the purge invariant. Depending on
how frequently the punctuations arrive, we may choose to run the purge task
after receiving a certain number of punctuations (purge threshold) or when the
memory usage reaches the limit. Similarly, the invalidation task also incurs

92 STREAM DATA MANAGEMENT

overhead in searching for expired tuples. We may decide to conduct this task
after processing a certain number of new tuples {invalidation threshold).

Due to the dynamic nature of the streaming environment, the threshold as-
sociated with these tasks may vary over time. For example, as other queries
enter and leave the system, the memory limit of a operator may be decreased
and increased accordingly. The traditional join algorithm that follows a fixed
sequence of operations is inappropriate for achieving such fine-tuned execution
logic. In response, we have devised a component-based adaptive join algorithm
to cope with the dynamic streaming environment. For this algorithm, we design
five components for accomplishing the five tasks listed above. We also employ
an event-driven framework to adaptively schedule these components according
to certain changes that may affect the performance of the operator.

As shown in Figure 5.5, the memory join is scheduled as long as new tuples
are ready to be processed. Meanwhile, an event generator monitors a vari-
ety of runtime parameters that serve as the component triggering conditions.
These parameters include the memory usage of the join state, the number of
punctuations that arrived since the last purge, etc. When a parameter reaches
the corresponding threshold, e.g., when the memory usage reaches the memory
limit, a corresponding event will be invoked. Then the memory j oin is suspended
and the registered listener to the invoked event, i.e., one of the components, will
be scheduled to run. After the listener finishes its work, the memory join will
be resumed. We have defined the following events for the join operator:

MemotyLimit PurgeThreshold
„ Reached Reached)

StreamEmpty InvalidationThreshold
Reached

Figure 5.5. Adaptive Component-Based Join Execution Logic.

1 StreamEmpty signals that both input streams currently contain no tuple.

2 PurgeThresholdReached signals that the number of unprocessed punctu-
ations has reached the purge threshold.

3 MemoryLimitReached signals the memory used by the join state has
reached the memory limit.

4 InvalidationThresholdReachedSignals that the number of newly-processed
tuples since the last invalidation has reached the invalidation threshold.

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 93

Table 5.1. Example Event-Listener Registry.

Events
StreamEmpty
PurgeThresholdReached
MemoryLimitReached
Memory LimitReached

Conditions
Activation threshold: 70%.
None.
There exist unprocessed punctuations.
There are no unprocessed punctuations.

Listeners
Disk Join
Purge
Purge
State Relocation

The join operator maintains an event-listener registry. Each entry in the
registry lists the event being generated, additional conditions to be checked
and the listener (component) which will be executed to handle the event. The
registry is initiated at the static query optimization phase and can be updated
at runtime. The thresholds used for invoking the events are specified in the
event generator. They can be changed at runtime. Table 5.1 shows an example
registry for a join with no sliding window applied. Hence, no entry in the
registry corresponds to the invalidation component.

3.5 Summary of Performance Evaluation
From our experimental study on the join operator in CAPE [Ding et al.,

2004; Ding et al., 2003], we have obtained the following observations:

• By only exploiting punctuations, in the best case the join state consumes
nearly constant memory. The shrinkage in state also helps improve the
tuple output rate of the join operator because the probe operation can now
be done more efficiently.

• In terms of the sliding window join, if the window contains a large amount
of tuples, by in addition exploiting punctuations, the memory consump-
tion of the join state is further reduced and the tuple output rate increases
accordingly due to the tuple dropping.

• The adaptive execution logic enables the join operator to continue out-
putting results even when the data delivery experiences temporary delay.
In addition, the appropriate purge threshold and invalidation threshold
settings help the join operator to achieve a good balancing between the
memory overhead and the tuple output rate.

4. Adaptive Execution Scheduling
Rather than randomly select operators to execute or leave such execution

ordering up to the underlying operating system, stream processing systems aim
to have fine-grained control over the query execution process. In response,
scheduling algorithms are being designed that decide on the order in which

94 STREAM DATA MANAGEMENT

the operators are executed. They target specific optimization goals, such as
increasing the output rate or reducing the memory usage.

4.1 State-of-the-Art Operator Scheduling
Current stream processing systems initially employed traditional scheduling

algorithms borrowed from the realm of operating systems [Dan and Towsley,
1990; Zahorjan and McCann, 1990], such as Round-Robin and FIFO. More re-
cently, customized algorithms designed specifically for continuous query eval-
uation have been proposed, including Chain [Babcock et al., 2003] in STREAM
and Train [Carney et al., 2003] in Aurora. The Chain scheduling strategy is
designed with the goal of minimizing intermediate queue sizes, thereby min-
imizing the memory overhead. However, it is not targeting at meeting other
Quality of Service (QoS) requirements. The Train scheduling algorithms, four
in total, are variations each tuned for a particular QoS criterion.

We have experimentally compared these popular algorithms under a variety
of stream workloads within the CAPE testbed. This experimental study [Suther-
land et al., 2004a] reveals that each of these algorithms is good at improving the
system performance in one specific manner, e.g., Chain for reducing memory
usage and FIFO for increasing the result output rate. Thus, even though many
scheduling algorithms exist in the literature, there is no one algorithm that a
system can utilize to satisfy the diversity of system requirements common to
stream systems. In other words, it is difficult to design a scheduling algo-
rithm that always functions effectively even when experiencing a wide variety
of changing conditions, including changing QoS requirements, the addition of
new queries or runtime query plan reoptimization (See Section 5).

The existing stream systems usually select one scheduling algorithm at the
beginning of the query execution and then stick with it. This overlooks the
fact that as the stream environment experiences changes, the initially optimal
scheduling algorithm may become sub-optimal over time. One possible solution
to this dilemma may be to put a human administrator in charge of the decision
on selecting scheduling algorithms. However, it is often impossible for an
administrator to know a priori which scheduling algorithm to pick, or more
challenging even which algorithm to turn on or off at runtime based on the
behavior of the system. It is exactly this issue of automating the scheduling
algorithm selection that we address in CAPE.

4.2 The ASSA Framework
We have designed a framework for the Adaptive Selection of Scheduling

Algorithms (ASSA for short) [Sutherland et al., 2004a]. The ASSA architecture
is depicted in Figure 5.6. ASSA is equipped with a library of scheduling
algorithms, ranging from well established ones like Round Robin and FIFO to

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 95

recently proposed ones like Chain and Train. As new scheduling algorithms
are developed, they can easily be plugged into this library.

Scheduling
Strategy Library l

Performance
Monitor

Strategy
Selector

Decision Operator
Request Decision

Statistics

Figure 5.6. Architecture of ASSA Scheduler.

In a nutshell, having several algorithms at its avail with each targeting differ-
ent QoS requirements, the Strategy Selector dynamically selects one scheduling
algorithm from the library for scheduling the execution of the operators in a plan.
For this, the Performance Monitor must establish some measures by which the
algorithms can be compared and ranked in terms of their expected effective-
ness. ASSA learns about the impact of each algorithm on the query system by
observing how well each algorithm has done thus far during execution. This
learned knowledge is encoded into a score for each algorithm.

The Strategy Selector then utilizes those learned scores to guide the selection
of the candidate algorithm. It applies a lightweight Adaptive Heuristic, also
called Roulette Wheel heuristic [Mitchell, 1996], that selects the next candidate
algorithm to use for scheduling based on its perceived potential to fulfill the
current set of QoS requirements. ASSA then simply asks this selected algorithm
to pick the next operator to execute. Lastly this decision is then reported to the
Execution Engine which carries out the control of the actual execution flow.

4.3 The ASSA Strategy: Metrics, Scoring and Selection
We now describe the specified QoS requirements that the ASSA selector

utilizes to assess the effectiveness of a scheduler. We also discuss the fitness
score assigned to each scheduler to capture how well it performed relative to
the other algorithms.

Quality of Service Requirements. Our system allows for the system
administrator to specify the desired execution behavior as a composition of
several metrics. A QoS requirement consists of three components: the statistic,
quantifier, and weight. The statistic corresponds to the metric that is to be
controlled. Performance metrics considered include throughput (the number
of result tuples produced), memory requirements, and freshness of results (the

96 STREAM DATA MANAGEMENT

amount of time a tuple stays in the system). The quantifier, either maximize
or minimize, specifies what the administrator wants to do with this preference.
The weight is the relative importance of each requirement, with the sum of all
weights equal to 1. We combine all of the QoS requirements into a single set
called a QoS specification. This specification is our indicator of how we want
the system to perform overall. Table 5.2 shows an example QoS specification.
Here, the administrator has specified that the system should give highest priority
to minimizing the queue size and next highest to maximizing the output rate.

Table 5.2. An example QoS specification.

Statistic
Input Queue Size
Output Rate

Quantifier
minimize
maximize

Weight
0.75
0.25

QoS requirements guide the adaptive execution by encoding a goal that the
system should pursue. Without these preferences, the system will not have any
criteria by which to determine how well or poorly a scheduler is performing. The
requirements specify the desired behavior in relative terms, such as maximize
the output rate or minimize the queue size(s) and their relative importance.
Absolute requirements are too dependent on data arrival patterns and in fact in
many cases are simply not achievable.

Scoring the Scheduling Algorithms. During execution, the Execution
Engine will update the statistics that are related to the QoS requirements. Once
updated, the system needs to decide how well the previous scheduler, ^/d,
has performed, and compare this performance to that of the other scheduling
algorithms. To accomplish this, a function is developed to quantify how well an
algorithm is performing for a particular QoS metric. First, the system calculates
the mean and the spread of the values of each of the statistics specified in the
service preferences for each category. Next, using the statistics from Sbid, the
relative mean of each of the statistics is calculated and then normalized.

The scoring function weighs the individual QoS metrics for relative impor-
tance (by multiplying by its corresponding weight IL\) and then normalizes
the collected statistics for those metrics such that one algorithm can be ranked
against another. We compute an algorithm's overall score, scheduler, score, by
combining the relative performance for all of the QoS metrics into one QoS
specification. The score assigned to an algorithm is not based solely on the pre-
vious time that it was used, but rather it is an exponentially smoothed average
value over time. By comparing 5o//s scheduler.score with the scores for the

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 97

other algorithms, the adapter is in a position to select the next most promising
scheduling candidate.

Guidelines for Adaptation. Several guidelines are considered when using
the scores to determine the next scheduling algorithm. Initially, all scheduling
algorithms should be given a chance to "prove" themselves. Otherwise the de-
cision would be biased against the algorithms that have not yet run. Therefore,
at the beginning of execution, we allow some degree of exploration on the part
of the adapter. Second, not switching algorithms periodically during execution
(i.e., greedily choosing the next algorithm to run) could result in a poor per-
forming algorithm being run more often than a potentially better performing
one. Hence, we periodically explore alternate algorithms. Third, switching al-
gorithms too frequently could cause one algorithm to impact the next and skew
the latter's results. For example, using Chain could cause a glut of tuples in the
input queues of the lower priority operators. If a batch-tuple strategy were to
be run next, its throughput would initially be artificially inflated because of the
way Chain operated on the tuples. More generally, when a new algorithm is
chosen, it should be used for enough time such that its behavior is not signifi-
cantly over-shadowed by the previous algorithm. For this, we empirically set
delay thresholds before reassessing the potential of a switch to be undertaken.

Adaptive Selection Process. After each algorithm is given a score, the
system needs to decide if the current scheduling algorithm performed well
enough that it should be used again or if better performance may be achieved
by changing algorithms. Considering Guideline 1 above, initially running each
algorithm in a round robin fashion is the fairest way to start adaptive scheduling.

Once each algorithm has had a chance to run, there are various heuristics that
could be applied to determine if it would be beneficial to change the scheduling
algorithm. In an effort to consider all scheduling algorithms while still proba-
bilistically choosing the best fit we adopted the Roulette Wheel strategy. This
strategy assigns each algorithm a slice of a circular "roulette wheel" with the
size of the slice being proportional to the individual's score. Then the wheel is
spun once and the algorithm under the wheel's marker is selected to run next.
This strategy was chosen because it is lightweight and does not cause significant
overhead. In spite of its simplicity, this strategy is shown to significantly out-
perform single scheduling strategies (See Section 4.4). While this strategy may
initially choose poor scheduling algorithms, over time it should fairly choose
a more fit algorithm. The strategy also allows for a fair amount of exploration
and thus it prevents one algorithm from dominating.

98 STREAM DATA MANAGEMENT

4.4 Summary of Performance Evaluation
An extensive experimental study on performance of ASSA can be found

in [Sutherland et al., 2004a]. We now briefly summarize the overall observations
from this study:

• For the special case of a QoS specification consisting of only one single
metric, ASSA indeed picks the one most optimal algorithm from all
available algorithms in the library.

• For a complex QoS specification combining multiple requirements, ASSA
also significantly improves performance over the run of any individual
algorithm by working with some combination of algorithms.

• ASSA is able to react to QoS requirements even as they are changed at
runtime by the system administrator.

• The overhead for the adaptation itself, i.e., the score calculation and the
switching among algorithms, is shown to be negligible.

• ASSA is shown to be general, i.e., new scheduling solutions developed
in the future can be plugged into the library of ASSA at any time.

5. Run-time Plan Optimization and Migration
Query plan optimization is critical for improving query performance. In a

stream processing system, data is not present at the time when a queiy starts but
is streaming in as time goes by. The long-running continuous queries have to
withstand fluctuations in stream workload and data characteristics. Therefore,
compared to static query processing system, a stream processing system has a
much more pressing need to re-optimize the continuous query plans at run-time.
A run-time plan optimization procedure takes three steps:

• Step 1: The optimizer decides when to invoke the optimization procedure.
Too frequent optimization creates extra burden on the system resources,
and too infrequent optimization may skip good optimization opportunities
and hurt the system performance as well. The timing of the optimization
is critical and needs to be carefully tuned. We present the solution in
CAPE for this issue in Section 5.1.

• Step 2: The optimizer constructs a new query plan that is semantically
equivalent to the currently running plan yet more efficient in terms of
system resource consumption or performance. This is done by applying
heuristics and rewriting rules to the old query plan based on gathered
system statistics. We will discuss the optimization heuristics in CAPE in
Section 5.2.

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 99

• Step 3: The optimizer migrates the old running query plan to the new plan
that it has chosen. We refer to this process as dynamic plan migration. A
novel feature of the run-time optimizer in CAPE, not yet offered by other
stream engines, is that it can efficiently at run-time migrate a stream query
plan even if it contains stateful operators. This dynamic plan migration
step is the critical service that enables optimization to occur at runtime
for stream query processing. We will discuss dynamic plan migration in
Sections 5.3 and 5.4.

5.1 Timing of Plan Re-optimization
In the CAPE system, the plan optimization procedure can be invoked in two

modes: the periodic mode and the event-driven mode.
In the periodic mode, the optimizer is invoked at a pre-specified optimization

interval. As mentioned in Section 2, we adopt a heterogeneous-grained adapta-
tion framework, in which each adaptation technique is assigned an adaptation
interval based on its overhead and its perceived potential gain. Since the cost of
the plan re-structuring is usually between the costs of the operator scheduling
(which is very low effort) and the across-machine plan re-distribution (which
is a more involved effort), so is its adaptation interval. The optimization inter-
val can also be tuned dynamically based on certain changes in streaming data
arrival rates or data distributions.

The CAPE system also identifies types of events that represent critical op-
timization opportunities that are unique to a stream processing system, as de-
tailed in Section 5.2. Whenever one of the events occurs, it will trigger the
optimizer running in the periodic mode to switch to the event-driven mode.
The optimizer then immediately reacts to the triggering event by taking the
corresponding actions typically in the form of applying customized heuristics.
Once the optimization has completed, the optimizer returns back to its default
mode, i.e., the periodic mode.

5.2 Optimization Opportunities and Heuristics
Many commonly used heuristics and rewriting rules in static database are

also applicable for continuous query optimization. In CAPE, an optimizer in
the periodic mode for example applies the following heuristics:

• The optimizer pushes down the select and project operators to minimize
the amount of data traveling through the query plan, unless sharing of
partial query plans dictates a delay of such early filtering.

• The optimizer merges two operators into one operator whenever possible,
such as merging two select operators or merging a group-by operator with

100 STREAM DATA MANAGEMENT

an aggregate operator, to reduce scan of data via shared data access and
to avoid context switching.

• The optimizer switches two operators based on their selectivities and
processing overhead. If Selj and Costj represent the selectivity and the
processing cost of an operator oj)j,, then operators opi and opj with opi
consuming data produced by opj can be switched if (1 — Selfi/Costi >
(1 - Selj)/Costj.

We have also identified several new optimization opportunities that are unique
to the stream processing system and its dynamic environment. We have incor-
porated these stream-specific optimization heuristics into CAPE as well.

Register/De-register Continuous Queries. A stream processing system of-
ten needs to execute numerous continuous queries at the same time. Sharing
among multiple queries can save a large amount of system resources. In addi-
tion, queries may be registered into or de-registered from the system at any time.
The above features can affect the decision of the optimizer. As an example,
assume the system currently has one query plan with one select and one join op-
erator, and after a while another query is registered which contains the same join
as the first query but no select. In this case, the optimizer can pull up the select
operator so the two queries can share the results from the join operator. Later
if the second query is de-registered from the system, the optimizer may need to
push the select down again. So the events of query registering/de-registering
create new optimization opportunities that CAPE utilizes to trigger heuristics
for query-sharing optimizations.

Item Stream Bid Stream Person Stream Item StreamBid Stream Person Stream

(a) Binary Join Tree (b) Multi-way Join

Figure 5.7. A Binary Join Tree and A Multi-way Join Operator.

Multi-Join Queries. Choosing the optimal order of multiple join operators has
always been a critical step in query optimization. There are two popular methods
to process a continuous query with multiple joins: a binary join tree as in tradi-
tional (static) databases, and a single multi-way join operator [Golab and Ozsu,

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 101

2003; ViglasetaL, 2003]. Forthe two joins JoinIJtemjj=BMemJd&B.bidderjd=RpJd>
in the query defined in Figure 5.3, Figures 5.7 (a) and (b) depict a query plan
composed of several binary joins and out of one multi-way join operator re-
spectively. A binary join tree stores all intermediate results in its intermediate
states, so no computation will be done twice. On the other hand, a multi-way
join operator does not save any intermediate results, so all useful intermediate
results need to be recomputed. A binary join tree saves CPU time by sacrificing
memory, while a multi-way join sits on the opposite end of the spectrum. Dy-
namically switching between these two achieves different balancing between
CPU and memoiy resources. The CAPE system monitors the usage of CPU and
memory while processing multiple joins. When the ratio of CPU to memory
is greater or smaller than some pre-defined threshold, the optimizer enters the
event-driven mode and switches between these two methods accordingly.
Punctuation-Driven Plan Optimization. The characteristics of punctuations
available to the queiy also affect the plan structuring decision making. Consid-
ering the example query shown in Figure 5.3, the two join operators in the query
plan are commutative, hence rendering two semantically equivalent plans. In
the plan shown in Figure 5.3, some join results of the first join may not be
able to join with any Person tuple in the second join because they don't satisfy
the sliding window constraint applied to the Person stream. Tf we choose to do
(BidtxPerson) first, the sliding window constraint will drop expired tuples early
so to avoid unnecessary work in the later join. However, in this plan, both join
operators need to propagate punctuations on the Person.p. id attribute to help the
group-by operator. This incurs more propagation overhead than the first plan in
which only the second join needs to propagate punctuations. The optimizer in
CAPE will choose the plan with less cost by considering these factors related
to punctuation-propagation costs and punctuation-driven unblocking.

5.3 New Issues for Dynamic Plan Migration
Dynamic plan migration is the key service that enables plan optimization

to proceed at runtime for stream processing. It is a unique feature offered by
the CAPE system. Existing migration methods instead adopt a pause-drain-
resume strategy that pauses the processing of new data, drains all old data from
the intermediate queues in the existing plan, until finally the new plan can be
plugged into the system.

The pause-drain-resume migration strategy is adequate for dynamically mi-
grating a query plan that consists of only stateless operators (such as select and
project), in which intermediate tuples only exist in the intermediate queues. On
the contrary, a stateful operator, such as join, must store all tuples that have been
processed thus far to a data structure called a state so to be able to join them
with future incoming tuples. Several strategies have been proposed to purge

102 STREAM DATA MANAGEMENT

unwanted tuples from the operator states, including window-based constraints
[Carney et al., 2002; Hammad et al., 2003; Kang et al., 2003; Motwani et al.,
2003] and punctuation-based constraints [Ding et al., 2004; Tucker et al., 2003]
(See Section 3). In all of these strategies the purge of the old tuples inside the
state is driven by the processing of new tuples or new punctuations from input
streams.

For a query plan that contains statefiil operators, the draining step of the
pause-drain-resume step can only drop the tuples from the intermediate queues,
not the tuples in the operator states. Those could only be purged by processing
new data. Hence there is a dilemma. CAPE offers a unique solution for stateful
runtime plan migration. In particular, the we have developed two alternate
migration strategies, namely Moving State Strategy and Parallel Track Strategy.
These strategies are now introduced below.

5.4 Migration Strategies in CAPE
Below, the term box is used to refer to the plan or sub-plan selected for

migration. The migration problem can then be defined as the process of trans-
ferring an old box containing the old query plan to a new box containing the new
plan. The old and new query plans must be equivalent to each other, including
identical sets of box input and output queues, as shown in Figure 5.8.

(Group-by pJdtCategoiy

\ /

Item Stream Bid Stream Person Stream Item Stream Bid Stream Person Stream

(a) Old Box (b) New Box

Figure 5.8. Two Exchangeable Boxes.

Moving State Strategy. The moving state strategy first pauses the execution of
the query plan and drains out tuples inside intermediate queues, similar to the
above pause-drain-resume approach. To avoid loss of any useful data inside
states, it then takes a three-step approach to safely move old tuples in old states
directly into the states in the new box. These steps are state matching, state
moving and state recomputing.

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 103

State matching determines the pairs of states, one in the old and one in the
new box, between which tuples can be safely moved. If two states have the
same state ID, which are defined as the same as its tuples' schema, we say that
those two states are matching states. In Figure 5.8, states (5/, S B , Sp) exist in
both boxes and are matching states. During the step of state moving, tuples are
moved between all pairs of matching states. This is accomplished by creating
a new cursor for each matching new state that points to its matching old state,
such that all tuples in the old state are shared by both matching states. The
cursors for the old matching states are then deleted. In the state recomputing
step, the unmatched states in the new box are computed recursively from the
leaves upward to the root of the query plan tree. Since the two boxes have
the same input queues, the states at the bottom of the new box always have a
matching state in the old box. Using the example shown in Figure 5.8, we have
identified an unmatched state SBP in the new box. We can recompute SBP by
joining the tuples in SB and Sp.

Once the moving state migration starts, no new results are produced by the
targeted migration box inside the larger query plan until the migration process
is finished. Of course, the remainder of the query plan continues its processing.
This way the output stream may experience a duration of temporary silence.
For applications that desire a smooth and constant output, CAPE offers a second
migration strategy called the parallel track strategy. This alternate strategy can
still deliver output tuples even during migration.
Parallel Track Strategy. The basic idea for the parallel track migration strat-
egy is that at the migration start time, the input queues and output queue are
connected and shared between the old box and the new box. Both boxes are
then being executed in parallel until all old tuples in the old box have been
purged. During this process, new outputs are still being continually produced
by the query plan. When the old box contains only new tuples, it is safe to
discard the old box. Because the new box has been executed in parallel with
the old box from the time the migration first starts, all the new tuples now in
the old box exist in the new box as well. So if the old box is discarded at this
time, no useful data will be lost.

A valid migration strategy must ensure that no duplicate tuples are being
generated. Since the new box only processes new tuples fed into the old box at
the same time, all output tuples from the new box will have only new sub-tuples.
However, the old box may also generate the all-new tuple case, which may
duplicate some results from the new box. To prevent this potential duplication,
the root operator of the old box needs to avoid joining tuples if all of them are
new tuples. In this way, the old box will not generate the all-new tuples.
Cost of Migration Strategies Detailed cost models to compute the performance
overhead as well as migration duration periods have been developed [Zhu et al.,
2004]. This enables the optimizer in CAPE to compute the cost of these two

104 STREAM DATA MANAGEMENT

strategies based on gathered system statistics, and then dynamically choose the
strategy that has the lowest overhead at the time of migration.

The two migration strategies have been embedded into the CAPE system.
While extensive experimental studies comparing them can be found in [Zhu
et al., 2004], a few observations are summarized here:

• Given sufficient system resources, the moving state strategy tends to finish
the migration stage quicker than parallel track.

• However, if the system has insufficient processing power to keep up with
the old query plan, the parallel track strategy, which can continuously
output results even during the migration stage, is observed to have a
better output rate during the migration stage.

• Overall, the costs of both migration strategies are affected by several
parameters, including the stream arrival rates, operator selectivities and
sizes of the window constraints.

6. Self-Ad justing Plan Distribution across Machines
While most current stream processing systems (STREAM [Motwani et al.,

2003], TelegraphCQ [Chandrasekaran et al., 2003], and Aurora [Abadi et al.,
2003]) initially have employed their engine on a single processor, such an
architecture is bound to face insurmountable resource limitations for most real
stream applications. A distributed stream architecture is needed to cope with
the high workload of registered queries and volumes of streaming data while
serving real-time results [Cherniack et al., 2003; Shah et al., 2003]. Below
we describe our approach towards achieving a highly scalable framework for
distributed stream processing, called Distributed CAPE (D-CAPE in short)
[Sutherland et al., 2004b].

6*1 Distributed Stream Processing Architecture
D-CAPE adopts a Shared-Nothing architecture shown to be favorable for

pipelined parallelism [DeWitt and Gray, 1992]. As depicted in Figure 5.9, D-
CAPE is composed of a set of query processors (in our case CAPE engines) and
one or more distribution managers. We separate the task of distribution deci-
sion making ("control") from the task of query processing to achieve maximal
scalability. This allows all query engines to dedicate 100% of their resources
to the query processing. The distribution decision making is encapsulated into
a separate module called the Distribution Manager. A Distribution Manager
typically resides on a machine different from those used as query processors,
though this is not mandatory.

D-CAPE is designed to efficiently distribute query plans and continuously
monitor the performance of each query processor with minimal communica-

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 105

tion between the controller and query processors. At runtime, during times of
heavy load or if it is determined by D-CAPE that reallocation will boost the
performance of the system, query operators are seamlessly reallocated to dif-
ferent query processors. By multi-tiering distribution managers, we can exploit
clusters of machines in different locations to process different workloads.

User Queries

Query Plan
Generator

CAPE Engine (Query Processor)

Initial Configuration
Settings

(^ Distribution Manager ^ ^

Connection f\ Query Plan Runtime
Manager |"~ Manager Monitor

Distribution
Decision Maker

© ©
Configuration Distributed Strategy Cost Model

Repository Repository Repository

Figure 5.9. Distribution Manager Architecture.

As illustrated in Figure 5.9, the Distribution Manager is composed of four
core components and three repositories. The Runtime Monitor listens for pe-
riodic statistics reported by each query processor, and records them into the
Cost Model Table. These run-time statistics form the basis for determining the
workload of processors and for deciding operator reallocation. The Connection
Manager is responsible for physically sending a sequence of appropriate con-
nection messages according to our connection protocol to establish operators to
machines. The Query Plan Manager manages the query plans registered by the
user in the system. The Distribution Decision Maker is responsible for deciding
how to distribute the query plans. There are two phases to this decision. First,
an initial distribution is created at startup using static information about query
plans and machine configurations. Second, at run-time query operators are re-
allocated to other query processors depending on how well the query processors
are perceived to be performing by the Decision Maker.

The Distribution Manager is designed to be light-weight. Only incremental
changes of the set of query plans are sent to the query processors to reduce the
amount of time the Distribution Manager spends communicating with each pro-
cessor at run-time. Our empirical evaluation of the Distribution Manager shows
that the CPU is rarely used, primarily, only when calculating new distribution (
[Sutherland et al., 2004b]). Furthermore, the network traffic the DM creates is
minimal. In short, this design of D-CAPE is shown to be highly scalable.

106 STREAM DATA MANAGEMENT

6.2 Strategies for Query Operator Distribution
Distribution is defined as the physical layout of query operators across a

set of query processors. The initial distribution of a query plan based only
on static information at query startup time is shown to directly influence the
query processing performance. The initial distribution depends only on two
pieces of information: the queries to be processed and the machines that have
the potential to do the work. The Distribution Decision Maker accepts both the
description of the query processors and query plans as inputs and returns a table
known as a Distribution Table (Figure 5.10). This table captures the assignment
of each queiy plan operator to the query processor it will be executing on.

Query Plans: Distribution Table

Operator
Operator 1

Operator 2

Operator 3

Operator 4

Operator 5

Operator 6

Operator 7

Operator 8

QP
QPl
QPl
QP2
QP3
QP4
QP4
QP4
QP5

Figure 5.10. Distribution Table.

The methodology behind how the table is created depends on the Distribu-
tion Pattern utilized by the Decision Maker. This allows us the flexibility to
easily plug in any new Distribution Pattern into the system. Two distribution
algorithms that were initially incorporated into D-CAPE are:

• Round Robin Distribution. It iteratively takes the next query operator
and places it on the still most "available" query processor, i.e., the one
with the fewest number of assigned operators. This ensures fairness in
the sense that each processor must handle an equal number of operators,
i.e., an equivalent workload.

• Grouping Distribution. It takes each query plan and creates sub-plans
for each query by maximally grouping neighboring operators together so
to construct connected subgraphs. This aims to minimize network con-
nections since adjacent operators with joint "pipes" are for the most part
kept on the same processor. Then it divides these connected subgraphs
among the available query processors.

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 107

After a distribution has been recorded into the distribution table, then the
Connection Manager distributes the query plan among the query processors.
Once the Connection Manager has completed the initial setup, query execution
can begin on the cluster of query processors, now no longer requiring any
interaction from the Distribution Manager.

63 Static Distribution Evaluation
Our work is one of the first to report experimental assessments on a working

distributed stream processing system. For details, the readers are referred to
[Sutherland et al., 2004b]. Below we list a summary of our findings:

• D-CAPE effectively parallelizes the execution of queries, improving per-
formance even for small query plans and for lightly loaded machines,
without ever decreasing performance beyond the central solution.

• The total throughput is improved when using more queiy processors over
that when using less processors. This is because we can assign a larger
CPU time slice to each operator.

• The larger the query plans in terms of number and type of operators,
the higher a percentage of performance improvement is achievable when
applying distribution (on the order of several 100%). In many cases
while the centralized CAPE fails due to resource exhaustion or a lack of
processing power, the distribution solution continues to prevail.

• The Grouping Distribution generally outperforms the Round Robin by
several fold. In part, this can be attributed to the Grouping Distribution
being "connection-aware", i.e., due to it minimizing the total amount of
data sent across the network and the number of connections.

6.4 Self-Adaptive Redistribution Strategies
When we first distribute a query plan, we only know static information such

as shape and size of the query plan, the number of input streams, and data about
the layout of the processing cluster. Dynamic properties such as state size,
selectivity, and input data rates are typically not known until execution. Worse
yet, these run-time properties tend to change over time during execution.

Due to such fluctuating conditions, D-CAPE is equipped with the capability
to monitor in a non-obtrusive manner its own query performance, to self-reflect
and then effectively redistribute query operators at run-time across the cluster
of query processors. We will allow for redistribution among any of the query
processors, not just adjacent ones, in our computing cluster.

Towards this end, we require a measure about the relative query processor
workload that is easily observable at runtime. One such measure we work with

108 STREAM DATA MANAGEMENT

is the rate at which tuples are emitted out of each processor onto the network.
This dynamically collected measure is utilized by the on-line redistribution
policy in D-CAPE for deciding if, when and how to redistribute.

Algorithm 1 Overall Steps for Redistribution.
1: costTable <— costModel.getTableQ
2: rnaxCosb <— costT able.get M axC ost{)
3: minCost *— costTable.getMinCostQ
4: if max — min > redistribution Per cent
5: while \valid(newDistribution) do
6: new Distribution *— RedistributionPolicy.redistributeQ
7: end while
8: dif jerenceTable <~ new Distribution — currentTable
9: connectNewDistribution{dif f erenceT'able)
10: currentTable <— new Distribution
11: end if

While new policies can be easily plugged into D-CAPE framework, one of
the redistribution policies we found to be effective in D-CAPE is called the
degradation redistribution policy. This policy alleviates load on machines that
have shown a degradation in cost since the last time operators were allocated
to the machine. If the cost has degraded beyond a certain threshold, we aim
to stop this degradation by moving the 'most costly' operators to other queiy
processors. This policy gives higher preference to those operators that will
remove a network connection from the overall distribution of operators — driven
by our empirical observation of the direct impact of higher connection loads on
the resulting system performance.

In general, any of the redistribution policies in D-CAPE, including the degra-
dation policy above, employs the steps detailed in Algorithm 1 for realizing the
desired re-distribution. These steps use our our handshake protocol between
the Distribution Manager and the designed for moving query operators between
processors The cost of moving an operator has been shown to be negligible in
our system due to this carefully designed connection protocol. Intuitively, since
we create the connections for the data to flow before we start sending the data,
we are able to "flip a switch" and in the eyes of the query processor, turn off
one operator and turn it on on another machine instantaneously.

6,5 Run-Time Redistribution Evaluation
Our results confirm that dynamic redistribution is a viable and even necessary

option for handling the performance degradation observed at runtime. Our re-
sults illustrate that redistribution can tune the execution if the initial distribution
is found to be bad or if it turns bad over time. While a detailed experimental
study can be found in [Sutherland et al., 2004b], key experimental observations
are shown below.

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 109

• The overhead for redistributing an operator or even a complete sub-plan
across machines is found to be negligible. This allows D-CAPE to per-
form reallocation at a high frequency, if deemed necessary.

• Even strategies that achieve good initial distribution patterns such as the
Grouping Distribution can still experience a further performance boost
when undergoing runtime redistribution.

• On-line operator re-allocation has been shown to improve performance
over time compared to only working with static distributions.

• Initial static distribution decisions significantly affect the performance in
the long-term even when continuing to dynamically apply reallocation.

7. Conclusion
In this chapter, we have presented a streaming query processing system

named CAPE. We reviewed the query optimization techniques that are unique to
CAPE, including the heterogeneous-grained adaptation framework and constraint-
exploiting techniques. The adaptation technologies we illustrated include the
adaptive operator execution logic, self-healing adaptive operator scheduling,
runtime query plan re-optimization and migration, and self-adjusting queiy plan
distribution across machines. CAPE employs these technologies to effectively
evaluate continuous queries in highly dynamic streaming environments.

References
D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,

M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new model and archi-
tecture for data stream management. VLDB Journal, 12(2): 120-139, August
2003.

A. Arasu, S. Babu, and J. Widom. CQL: A language for continuous queries
over streams and relations. In DBPL, pages 1-19, Sep 2003.

B. Babcock, S. Babu, R. Motwani, and M. Datar. Chain: operator scheduling
for memory minimization in data stream systems. In ACM SIGMOD, pages
253-264, 2003.

S. Babu and J. Widom. Exploiting k-constraints to reduce memory over-
head in continuous queries over data streams. ACM Transactions on Database
Systems, 39(3), Sep 2004.

D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams - a new class of
data management applications. In VLDB, pages 215-226, August 2002.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin, J. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah.

110 STREAM DATA MANAGEMENT

TelegraphCQ: Continuous dataflow processing for an uncertain world. In CIDR,
pages 269-280, Jan 2003.

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel,
Y. Xing, and S. Zdonik. Scalable distributed stream processing. In CIDR, 2003.

D. Carney and U. Cetintemel and A. Rasin et al. Operator scheduling in a
data stream manager. In VLDB, pages 838-849, 2003.

A. Dan and D. Towsley. An approximate analysis of the lru and fifo buffer
replacement schemes. In ACM SIG'METRICS, pages 143-152, 1990.

D. J. DeWitt and J. Gray. Parallel database systems: The future of high
performance database systems. Communications of the ACM, 35(6):85-98,
1992.

L. Ding, N. Mehta, E. A. Rundensteiner, and G. T. Heineman. Joining
punctuated streams. In EDBT, pages 587-604, March 2004.

L. Ding, E. A. Rundensteiner, and G. T. Heineman. MJoin: A metadata-
aware stream join operator. In DEBS, June 2003.

L. Golab and M. T. Ozsu. Processing sliding window multi-joins in contin-
uous queries over data streams. In VLDB, pages 500-511, Sep 2003.

P. Haas and J. Hellerstein. Ripple joins for online aggregation. In ACM
SIGMOD, pages 287-298, June 1999.

M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K. Elmagarmid. Schedul-
ing for shared window joins over data streams. In VLDB, pages 297-308, Sep
2003.

J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window joins over
unbounded streams. In ICDE, pages 341-352, March 2003.

S. Madden and M. Franklin. Fjording the stream: An architecture for queries
over streaming sensor data. In ICDE, pages 555-566, Feb 2002.

M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.
M. F. Mokbel, M. Lu, and W. G. Aref. Hash-merge join: A non-blocking join

algorithm for producing fast and early join results. In ICDE, pages 251-262,
Mar/Apr 2004.

R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku,
C. Olston, J. Rosenstein, and R. Varma. Query processing, resource manage-
ment, and approximation in a data stream management system. In CIDR, pages
245-256, Jan 2003.

E. A. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu, B. Pielech, andN. Mehta.
Cape: Continuous query engine with heterogeneous-grained adaptivity. In
VLDB Demo, Aug/Sep 2004, to appear.

M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux:
An adaptive partitioning operator for continuous query systems. In ICDE, pages
25-36, 2003.

Stanford University. Stream query repository.
http://www-db.stanford.edu/stream/sqr/, Dec 2002.

CAPE: A Constraint-Aware Adaptive Stream Processing Engine 111

T. Sutherland, B. Pielech, and E. A. Rundensteiner. Adaptive scheduling
framework for a continuous query system. Technical Report WPI-CS-TR-04-
16, Worcester Polytechnic Institute, April 2004.

T. Sutherland and E. A. Rundensteiner. D-cape: A self-tuning continu-
ous query plan distribution architecture. Technical Report WPI-CS-TR-04-18,
Worcester Polytechnic Institute, July 2004.

P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting punctuation
semantics in continuous data streams. IEEE Transactions on Knowledge and
Data Engineering, 15(3):555-568, May/June 2003.

T. Urhan and M. Franklin. XJoin: A reactively scheduled pipelined join
operator. IEEE Data Engineering Bulletin, 23(2):27-33, 2000.

S. Viglas, J. Naughton, and J. Burger. Maximizing the output rate of multi-
way join queries over streaming information. In VLDB, pages 285—296, Sep
2003.

A. N. Wilschut and P. M. G. Apers. Dataflow query execution in a parallel
main-memory environment. Distributed and Parallel Databases, 1(1): 103—
128, 1993.

J. Zahorjan and C. McCann. Processor scheduling in shared memory multi-
processors. In ACMSIGMETRICS, pages 214-225, 1990.

Y. Zhu, E. A. Rundensteiner, and G. T. Heineman. Dynamic plan migration
for continuous queries over data streams. In ACMSIGMOD, June 2004.

Chapter 6

EFFICIENT SUPPORT FOR TIME SERIES
QUERIES IN DATA STREAM MANAGEMENT
SYSTEMS

Yijian Bai, Chang R. Luo, Hetal Thakkar, and Carlo Zaniolo
Computer Science Department
UCLA
bai,lc,hthakkar,zaniolo@cs.ucla.edu

Abstract There is much current interest in supporting continuous queries on data streams
using generalizations of database query languages, such as SQL. The research
challenges faced by this approach include (i) overcoming the expressive power
limitations of database languages on data stream applications, and (ii) provid-
ing query processing and optimization techniques for the data stream execution
environment that is so different from that of traditional databases. In particu-
lar, SQL must be extended to support sequence queries on time series, and to
overcome the loss of expressive power due to the exclusion of blocking queiy
operators. Furthermore, the query processing techniques of relational databases
must be replaced with techniques that optimize execution of time-series queries
and the utilization of main memory. The Expressive Stream Language for Time
Series (ESL-TS) and its query optimization techniques solve these problems ef-
ficiently and are part of the data stream management system prototype developed
at UCLA.

1. Introduction
There is much ongoing research work on data streams and continuous queries

[Babcock et al., 2002; Golab and Ozsu, 2003]. The Tapestry project [Bar-
bara, 1999; Terry, 1992] was the first to focus on the problem of 'queries that
run continuously over a growing database'. Recent work in the TelegraphCQ
project [Chandrasekaran and Franklin, 2002; Madden et al., 2002] focuses on ef-
ficient support for continuous queries and the computation of traditional SQL-2
aggregates that combine streams flowing from a network of nodes. The Tribeca
system focuses on network traffic analysis [Sullivan, 1996] using operators

114 STREAM DATA MANAGEMENT

adapted from relational algebra. The OpenCQ [Liu et al., 1999] and Niagara
Systems [Chen et al., 2000] support continuous queries to monitor web sites

and similar resources over the network, while the Chronicle data model uses
append-only ordered sets of tuples (chronicles) that are basically data streams
[Jagadish et al., 1995].

The Aurora project [Carney et al., 2002] aims at building data management
systems that provide integrated support for

• Data streams applications, that continuously process the most current
data on the state of the environment.

• Applications on stored data (as in traditional DBs)

• Spanning applications that combine and compare incoming live data with
stored data. This requires balancing real-time requirements with efficient
processing of large amounts of disk-resident data.

The learning curve and complexity of writing spanning applications can be
minimized if SQL is used on both data bases and data streams. This observation
justifies the choice of SQL as query language made by most research projects on
data streams; however, these projects often underestimate the challenges faced
by SQL in this new role. For instance, the design of a general-purpose data
stream language and system is the stated objective of the CQL [Arasu et al.,
2002] project, which introduces several SQL-based constructs with rigorous
semantics [Arasu et al., 2002]. Yet, CQL appears to be effective only for
simple queries, and lacks the ability of supporting mining queries, sequence
queries, and even some of the monotonic queries expressible in SQL which are
discussed next1.

The expressive power challenge faced by continuous query languages was
elucidated in [Law et al., 2004] where it was shown that (i) queries can be
expressed by nonblocking computations iff they are monotonic, and that (ii)
relational algebra (RA) and SQL are not relationally complete on data streams,
since some monotonic queries1 of relational algebra can only be expressed by
RA or SQL by their blocking operators (which must be disallowed on data
streams). Moreover, the seriousness of SQL problems proven by the theory
are surpassed by those experience in practice, where we find that SQL cannot
support many important classes of applications, including data mining and
sequence queries.

The limitations of SQL with time-series queries are well-known, and have
been the focus of many database research projects aiming at supporting time-
series analysis and the search for interesting patterns in stored sequences [In-
formix, 1998; Ramakrishnan et al., 1998; Seshadri et al., 1994; Seshadri and
Swami, 1995; Seshadri, 1998; Perng and Parker, 1999]. Informix [Informix,
1998] was the first among commercial DBMSs to provide special libraries

Time Series Queries in Data Stream Management Systems 115

for time-series, that they named datablades; these libraries consist of func-
tions that can be called in SQL queries. While other database vendors were
quick to embrace it, this procedural-extension approach lacks expressive power
and amenability to query optimization. To solve these problems, the SEQ
and PREDATOR systems introduce a special sublanguage, called SEQUIN
for queries on sequences [Seshadri et al., 1994; Seshadri and Swami, 1995; Se-
shadri, 1998]. SEQUIN works on sequences in combination with SQL working
on standard relations; query blocks from the two languages can be nested inside
each other, with the help of directives for converting data between the blocks.
SEQUIN's special algebra makes the optimization of sequence queries possi-
ble, but optimization between sequence queries and set queries is not supported;
also its expressive power is still too limited for many application areas. To ad-
dress these problems, SRQL [Ramakrishnan et al , 1998] augments relational
algebra with a sequential model based on sorted relations. Thus sequences are
expressed in the same framework as sets, enabling more efficient optimization
of queries that involve both [Ramakrishnan et al., 1998]. SRQL also extends
SQL with some constructs for querying sequences.

SQL/LPP is a system that adds time-series extensions to SQL [Perng and
Parker, 1999]. SQL/LPP modets time-series as attributed queues (queues aug-
mented with attributes that are used to hold aggregate values and are updated
upon modifications to the queue). Each time-series is partitioned into segments
that are stored in the database. The SQL/LPP optimizer uses pattern-length
analysis to prune the search space and deduce properties of composite patterns
from properties of the simple patterns.

SQL-TS [Sadri et al., 2001b; Sadri et al., 2001a] introduced simple and
yet powerful extensions of SQL for finding patterns in sequences, along with
techniques generalizing the Knuth-Morris-Pratt (KMP) algorithm [Knuth et al.,
1977] to support the optimization of such queries. The ESL-TS system, dis-
cussed next, extends those constructs to work on data streams, rather than stored
data, and uses a novel implementation and optimization architecture that ex-
ploits the native extensibility of ESL and the Stream Mill system.

The paper is organized as follows. In the next section, we introduce the time-
series constructs of the ESL-TS language, which is, in Section 3, compared with
languages proposed in the past for similar queries. In Section 4, we discuss the
native extensibility mechanisms of ESL that we use in the implementation of
ESL-TS, described in Section 5. In Section 6, we provide a short overview of
the query optimization techniques used in such implementation.

116 STREAM DATA MANAGEMENT

2. The ESL-TS Language
Our Expressive Stream Language for Time Series (ESL-TS) supports sim-

ple SQL-like constructs to specify input data stream and search for complex
sequential patterns on such streams.

Suppose we have a log of the web pages clicked by a user during a session
as follows:

STREAM Sessions(SessNo, ClickTime, PageNo, Pageiype) ORDER BY ClickTime;

Here input pages are explicitly sequenced by ClickTime using the ORDER
BY clause. A user entering the home page of a given site starts a new session
that consists of a sequence of pages clicked; for each session number, SessNo,
the log shows the sequence of pages visited—where a page is described by its
timestamp, ClickTime, number, PageNo and type PageType (e.g., a content page,
a product description page, or a page used to purchase the item).

The ideal scenario for advertisers is when users (i) see the advertisement
page for some item in a content page, (ii) jump to the product-description page
with details on the item and its price, and finally (iii) click the 'purchase this
item' page. This advertisers' dream pattern can be expressed by the following
ESL-TS query, where 'a', ' d \ and 'p ' , respectively, denote an ad page, an item
description page, and a purchase page:

E X AMPLE 6 . 1 Using the FROM clause to define patterns

SELECT Y.PageNo, Z.ClickTime
FROM Sessions

PARTITION BY SessNO AS (X, Y, Z)
WHERE X.PageType='a'

AND Y.PageType='d'
AND Z.PageType='p'

Thus, ESL-TS is basically identical to SQL, but for the following additions
to the FROM clause .

• A PARTITION BY clause specifies that data for the different sessions are
processed separately (i.e., as if they arrived in separate data streams.)
The semantics of this construct is basically the same as the PARTITION BY
construct used in SQL:1999 windows [Zemke et a l , 1999], which is also
supported in the languages proposed by many data stream projects [Bab-
cock et al., 2002]. In this example, the PARTITION BY clause specifies
that data for each SessNO are processed as separate streams. The pattern
AS (X, Y, Z) specifies that, for each SessNO, we seek a sequence of the
three tuples X, Y, z (with no intervening tuple allowed) that satisfy the
conditions stated in the WHERE clause.

Time Series Queries in Data Stream Management Systems 117

• The AS clause, which in SQL is mostly used to assign aliases to the
table names, is here used to specify a sequence of tuple variables from
the specified table. By (X, Y, Z) we mean three tuples that immediately
follow each other.
Tuple variables from this sequence can be used in the WHERE clause to
specify the conditions and in the SELECT clause to specify the output.

In the SELECT clause, we return information from both the Y tuple and the
Z tuple. This information is returned immediately, as soon as the pattern is
recognized; thus it generates another stream that can be cascaded into another
ESL-TS statement for processing.

2.1 Repeating Patterns and Aggregates
A key feature of ESL-TS is its ability to express recurring patterns by using

a star operator. For instance, to determine the number of pages the user has
visited before clicking a product description page (denoted by 'd') we simply
write:

EXAMPLE 6.2 Number of pages visited before the product description page
is clicked, provided that this count is below 20
SELECT SessNo, count(*A)
FROM Sessions

PARTITION BY SessNO
AS (*A, B)

WHERE A.PageType < > 'd'
AND B.PageType = 'd'
AND count(*A) < 20

Thus, *A identifies a maximal sequence of clicks to pages other than 'product'
pages. Then, count(*A) tallies up those pages and, after checking that the count is
less than 20, returns SessNo and the associated count to the user. The maximality
of the star construct is important to avoid ambiguity and the possible explosion
of matches.

ESL-TS supports a rich set of aggregates, as needed for time series analy-
sis [Linoff and Berry, 1997]; aggregates supported includes rollups, running
aggregates, moving-window aggregates, online aggregates, and user-defined
aggregates inherited from the AXL/ATLaS system [Wang and Zaniolo, 2000].
Aggregates can only be applied to sequences defined by stars, and come in two
very distinct flavors:

1 final aggregates applicable only after the star computation has completed,
and

2 continuous aggregates that apply during the star computation.

118 STREAM DATA MANAGEMENT

For instance, count(*A) in Example 6.2 is a final aggregate: a sequence of
pages is accepted, until a V page terminates the sequence. At that point, the
condition count(*A) < 20 is evaluated, and if satisfied the sequence is accepted
and SessNo and count(*A) for that session are returned, otherwise the sequence is
rejected. Example 6.3 illustrates the use of continuous aggregates—i.e., those
that return the current value of the aggregates during the computation, as per
online aggregates [Hellerstein et al., 1997]. It also illustrates how ESL-TS
benefits from its ability of using standard SQL queries in combination with
queries on sequences.

The previous queries were based on examples discussed in [Sadri et al.,
2001 b]. Let us now consider examples inspired by current data stream testbeds
[Babu, 2002]. Assume we have an incoming stream speed sent by sensors placed
on stations along the highway, which measures the average speed of cars once
every minute. Also we have a database table stations that has descriptions of the
stations, such as "Close to Exit 111".

STREAM speed(stationld, speed, speedTime) ORDER BY speedTime;
TABLE stations(stationld, location);

A good way of determining traffic condition is to find out jam locations along
the highway. The jam condition is defined as a series of decreasing speeds,
which leads to a more than 70% speed reduction, from some starting speed
higher than 50 mph, within a time span of at most 6 minutes (we have assumed
one measurement per minute). Example 6.3 uses continuous aggregates to
detect such locations. The aggregate ccount is the online version of count, i.e.,
a continuous count that returns a new value for each new input. Thus, the
condition ccount(X)<=6 is satisfied for the first 6 elements in the sequence and,
upon failing on the 7th element, it brings the star sequence to completion. In
general, continuous aggregates can be returned at various points during the
computation of the sequence, as online aggregates do [Hellerstein et al., 1997];
thus, they can also be used in the conditions that determine whether the current
tuple must be added to the star sequence being recognized.

The two different kinds of aggregates are syntactically distinguished by the
fact that, the argument of a final aggregate is prefixed by the star; while there
is no star in the argument of continuous aggregates. This query also uses the
aggregate LAST; this a built-in aggregate that always returns the final value in
the star sequence (thus, in Example 6.3 it is used to return the last value of speed
in the sequence *Y.)

EXAMPLE 6.3 Find out the jam locations along the highway
SELECT A.location, LAST(Y).speedTime
FROM stations AS A, speed

PARTITION BY stationld AS (X, *Y)
WHERE X.speed> 50

AND Y.speed < Y.previous.speed

Time Series Queries in Data Stream Management Systems 119

AND LAST(*Y).speed < 0.3*X.speed
AND ccount(Y) <= 6
AND X.stationld = A.stationld

Notice that, to retrieve the description of station locations, we use standard
SQL to access database table stations. Also notice that we use the WHERE clause
to specify conditions on both the values of attributes and those of aggregates.
This is a simplification of traditional SQL (that would instead require HAVING
for conditions on aggregates). This simplification is veiy beneficial for the
users, and it has been adopted in more recent query languages such as XQuery
[Boag et al., 2003].

The simplification is made possible by the lack of ambiguity associated with
the sequential processing of patterns such as *Y. The processing is as follows:
for each new tuple (i) the current values of attributes and continuous aggregates
(i.e., those without the star, such as ccount(Y)) are evaluated and all the applicable
conditions in the WHERE clause are tested, and (ii) if said conditions evaluate to
true, then the computation of the star continues with the next tuple. Otherwise
the evaluation of *Y completes and the final aggregates such as count(*Y) are
computed and their values are used to test the applicable conditions in the where
clause.

In general, therefore, we treat conditions on starred aggregates like conditions
in the HAVING clause of standard SQL. Thus, for Example 6.2, the statement
WHERE count(*A) < 20 is treated like HAVING count(A) < 20.

Finally, the meaning of an aggregate such as avg(* A) would become undefined
if *A were to contain zero or more elements, and therefore we require one or
more elements in a the star construct. Therefore, ESL-TS wants to achieve both
users' convenience and rigorous semantics; a formal logic-based semantics for
the language constructs was presented in [Sadri, 2001].

As a more sophisticated example, say we want to find out the course of a
traffic accident from the speed stream. We can compute a diff stream from speed
stream with the following schema2:

STREAM diff(stationld, speed_diff, speedTime) ORDER BY speedTime;

A tuple in diff specifies speed difference between cars at the current station
and cars at the next station. Under normal traffic, the difference remains under a
rather low value. Whenever an accident happens, we will see a sudden increase
of this difference; here, we define it as a more than 2 times increase within a
time span of 6 minutes. After the accident is cleared, the difference drops back
to a range within 10% of the stable condition. In this query, *Y is the pattern
when the sudden speed difference jump happens, and once the increase stops the
pattern *Z starts to match. *Z matching fails when the speed difference comes
back to 10% of previous difference, or 60 minutes have elapsed, at which point
the pattern is returned to the user.

120 STREAM DATA MANAGEMENT

EXAMPLE 6.4 Detection of traffic accidents
SELECT X.stationld, FIRST(Y).speedTime,

LAST(Z).speedTime,LAST(Z).speedjdiff
FROM diff
PARTITION BY stationld
AS (X, *Y, *Z)

WHERE X.speed_diff <= 15
AND Y.speed-diff > Y.previous.speedjdiff
AND LAST(*Y).speed_diff > 2*X.speed_diff
AND ccount(Y) < - 6
ANDZ.speed_diff> 1.1*X.speed.diff
AND ccount(Z) <= 60

2.2 Comparison with other Languages
The following example illustrates a search pattern on streams that has been

previously proposed by other languages on stored sequences.

EXAMPLE 6.5 Given a stream of events (time, name, type, magnitude) consist-
ing of Earthquake and Volcano events, retrieve Volcano name and Earthquake
name for volcano eruptions where the last earthquake (before the volcano) was
greater than 7.0 in magnitude.
SELECT V.name, LAST(E).name
FROM events AS (*E, V)
WHERE E.type ̂ 'Earthquake' AND V.type = 'Volcano'

AND LAST(E).magnitude >= 7.0

This simple example is easily expressed in all the pattern languages proposed
in the past [Ramakrishnan et al., 1998; Seshadri et al., 1994; Seshadri and
Swami, 1995; Seshadri, 1998; Perng and Parker, 1999].

However, as illustrated in [Perng and Parker, 1999] most languages have
problems with more complex patterns, such as the classical double-bottom
queries, where given the table (name, price, time), for each stock find the W-
curve (double-bottom). W-curve is a period of falling prices, followed by a
period of rising prices, followed by another period of falling prices, followed
by yet another period of rising prices. To make sure it is a "real" pattern we
will enforce at least 5 prices in each period. In SQL/LPP+, this complex query
is handled by the definition of patterns "uptrend" and "downtrend" followed by
"doublebottom" as shown next.

EXAMPLE 6.6 Double Bottom in SQL/LPP+
CREATE PATTERN uptrend AS

SEGMENT s OF quote WHICH J S FIRST MAXIMAL, NON-OVERLAPPING
ATTRIBUTE name AS first(s, l).name
ATTRIBUTE b_date AS first(s, l).time

Time Series Queries in Data Stream Management Systems 121

ATTRIBUTE b_price AS first(s, l).price
ATTRIBUTE e_date AS last(s, l).time
ATTRIBUTE cprice AS last(s, l).price

WHERE [ALL e IN s] (e.price >= prev(e, l).price
AND e.nanie = prev(e, l).name)
ANDlength(s)>=5

CREATE PATTERN downtrend AS ...
/*this is similar to uptrend and omitted for lack of space*/
CREATE PATTERN double-bottom AS

downtrend pi ; uptrend p2; downtrend p3; uptrend p4 WHICH JS ALL,
NON-OVERLAPPING WHICH JS NON-OVERLAPPING
ATTRIBUTE name IS first(pl).name
ATTRIBUTE b.date IS first(pl).time
ATTRIBUTE b_price IS first(pl).price
ATTRIBUTE e_date IS Iast(p4).time
ATTRIBUTE e_price IS Iast(p4).prke

WHERE pi.name = p2.name AND p2.name = p3.name
AND p3.name = p4.name

SELECT db.bjdate, db.b_price, db.ejdate, db.cprice
FROM double-bottom

ESL-TS can express the same pattern in much fewer lines:

EXAMPLE 6.7 Double Bottom in ESL-TS
SELECT W.name, FIRST(W).time,

FIRST(W).price, LAST(Z).time, LAST(Z).price FROM quote
PARTITION BY name
SEQUENCE BY date
AS (*W, *X, *Y, *Z)

WHERE W.price <= W.previous.price AND count(*W) >= 5
AND X.price >= X.previous.price AND count(*X) >= 5
AND Y.price <= Y.previous.price AND count(*Y) >= 5
AND Z.price >= Z.previous.price AND count(*Z) >= 5

3. ESL and User Defined Aggregates
ESL-TS is implemented as an extension of ESL that is an SQL-based data-

stream language that achieves native extensibility and Turing completeness via
user-defined aggregates (UDAs) defined in SQL itself rather than in an external
procedural language. In fact, using nonblocking UDAs, ESL overcomes the
expressive power loss from which all data stream languages suffer because of
the exclusion of blocking operators. In [Law et al., 2004], it is shown that (i)
all (and only) monotonic queries can be expressed by nonblocking computa-
tions, and (ii) using nonblocking UDAs, ESL can express all the computable
monotonic functions. The practical benefits achieved by ESL's extraordinary
level of theoretical power will become clear in the next section, where we will

122 STREAM DATA MANAGEMENT

show that the pattern-searching constructs of ESL-TS can be implemented by
mapping them back into the UDAs of standard ESL.

User Defined Aggregates (UDAs) are important for decision support, stream
queries, and other advanced database applications [Wang and Zaniolo, 2002;
Babcock et a l , 2002; Hellerstein et al , 1997]. ESL adopts from SQL-3 the idea
of specifying a new UDA by an INITIALIZE, an ITERATE, and a TERMINATE
computation; however, ESL lets users express these three computations by
a single procedure written in SQL [Wang and Zaniolo, 2000]— rather than
by three procedures coded in procedural languages as prescribed by SQL-2?.
Example 6.8 defines an aggregate equivalent to the standard AVG aggregate in
SQL. The second line in Example 6.8 declares a local table, state, where the
sum and count of the values processed so far are kept. Furthermore, while in
this particular example, state contains only one tuple, it is in fact a table that can
be queried and updated using SQL statements and can contain any number of
tuples. Thus, INITIALIZE inserts the value taken from the input stream and sets the
count to 1. The ITERATE statement updates the tuple in state by adding the new
input value to the sum and 1 to the count. The TERMINATE statement returns the
ratio between the sum and the count as the final result of the computation by the
INSERT INTO RETURN statement4. Thus, the TERMINATE statements are processed
just after all the input tuples have been exhausted.

EXAMPLE 6.8 Defining the standard aggregate average
AGGREGATE myavg(Next Int): Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE: {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+l;

}
TERMINATE : {

INSERT INTO RETURN
SELECT tsum/cnt FROM state;

Observe that the SQL statements in the INITIALIZE, ITERATE, and TERMINATE
blocks play the same role as the external functions in SQL-3 aggregates. But
here, we have assembled the three functions under one procedure, thus support-
ing the declaration of their shared tables (the state table in this example).

deallocated just after the TERMINATE statement is completed. This approach
to aggregate definition is very general. For instance, say that we want to support
tumbling windows of 200 tuples [Carney et al., 2002]. Then we can write the
UDA of Example 6.9, where the RETURN statements appear in ITERATE instead of

Time Series Queries in Data Stream Management Systems 123

TERMINATE. The UDA tumble jivg, so obtained, takes a stream of values as input
and returns a stream of values as output (one every 200 tuples). While each
execution of the RETURN statement produces here only one tuple, in general, a
UDA can produce (a stream of) several tuples. Thus UDAs operate as general
stream transformers. Observe that the UDA in Example 6.8 is blocking, while
that of Example 6.9 is nonblocking. Thus, nonblocking UDAs are easily ex-
pressed in ESL, and clearly identified by the fact that their TERMINATE clauses
are either empty or absent. The typical default semantics for SQL aggregates
is that the data are first sorted according to the GROUP-BY attributes: thus the
very first operation in the computation is a blocking operation. Instead, ESL
uses a (nonblocking) hash-based implementation for the GROUP-BY calls of the
UDAs. This default operational semantics leads to a stream oriented execution,
whereby the input stream is pipelined through the operations specified in the
INITIALIZE and ITERATE clauses: the only blocking operations (if any) are those
specified in TERMINATE, and these only take place at the end of the computation.

EXAMPLE 6.9 Average on a Tumbling Window of 200 Tuples
AGGREGATE tumblejivg(Next Int): Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE: {
INSERT INTO state VALUES (Next, 1);

}
ITERATE: {

UPDATE state
SET tsum-tsum+Next, cnt=cnt+l;

INSERT INTO RETURN
SELECT tsum/cnt FROM state
WHERE cnt % 200 = 0;

UPDATE state SET tsum=0, cnt=0;
WHERE ent% 200 = 0

}
TERMINATE:! }

ESL supports standard SQL, where the UDAs (defined using SQL) are called
in the same way as any other built-in aggregate. As discussed above, both
blocking and non-blocking UDAs can be used on database tables, however
only non-blocking UDAs can be used on streams, as in the next example. For
instance, given an incoming stream which contains bidding data for an online-
auction web site:

STREAM bid(auctionid, price, bidder id, bidiime) ORDER BY bidiime;

Example 6.10 continuously computes the number of unique bidders for auc-
tion with ID 1024 within a time-based sliding window of 30 minutes by applying
a non-blocking UDA bidder.wcount on stream bid (which will be define in the

124 STREAM DATA MANAGEMENT

next example). The first two lines in Example 6.10 illustrate stream declaration
in ESL. The next two lines of Example 6.10 filter the tuples from the stream
bid using the condition auction_id=1024; the tuples that survive the filter are then
pipelined to the UDA bidder.wcount.

EXAMPLE 6.10 UDAs and Streams in ESL
STREAM bid(auctionJd, price, bidder id, bidiime)

ORDER BY bid-time;
SELECT auction id, bidder _wcount(bidder id, bidiime, 30)

FROM bid WHERE auctionid=1024;

In Example 6.11, we define an aggregate bidder.wcount that continuously
returns the count of unique bidders within a sliding window of certain number
of minutes, with the window size passed in as a formal parameter. Observe that
the formal parameters of the UDA function are treated as constants in the SQL
statements. Thus, the INSERT statement in INITIALIZE put into the table bidders
with the constant bidder-id and bid-time. In ITERATE, we first add the bidder into
the table bidders, if it is a new bidder. Then, if it is an existing bidder, we
update the last seen timestamp for that bidder. Next, we delete all bidders last
seen before the sliding window starts. Finally, the RETURN statement in ITERATE
returns the current count of unique bidders within the sliding window.

EXAMPLE 6.11 Continuous count of unique bidders within a sliding window
of certain number of minutes
AGGREGATE bidder_wcount(bidderid, bidiime, num_niin):(bcount)
{ TABLE bidders(bid, btime);

INITIALIZE:{
INSERT INTO bidders VALUES(bidderid, bidiime);

}
ITERATE:{

INSERT INTO bidders VALUES(bidderid, bidiime)
WHERE bidderid NOT IN (SELECT bid FROM bidders);

UPDATE bidders SET btime = bidiime
WHERE bidderid = bid;

DELETE FROM bidders
WHERE bidiime > (btime + numjnin minutes);

INSERT INTO RETURN
SELECT count(bid) FROM bidders

}
TERMINATE : {}

Observe that, this UDA has an empty TERMINATE, thus it is non-blocking and
can be used on streams. It maintains a buffer with minimum number of tuples
within the sliding window, those that are needed to ensure all the unique bidders
are counted.

Time Series Queries in Data Stream Management Systems 125

The power and native extensibility produced by UDAs makes them very
useful in a variety of application areas, particularly those, such as data mining,
that are too difficult for current O-R DBMSs [Han et al., 1996; Meo et al.,
1996; Imielinski and Virmani, 1999; Sarawagi et al., 1998]. The ability of
UDAs to support complex data mining algorithms was discussed in [Wang
and Zaniolo, 2003], where they were used in conjunction with table functions
and in-memory tables to achieve performance comparable to that of procedu-
ral algorithms under the cache mining approach. For instance in [Wang and
Zaniolo, 2003], a scalable decision-tree classifier was expressed in less than 20
statements. In the next section we describe how UDAs are used to implement
SQL-TS.

4. ESL-TS Implementation
The ESL-TS query of Example 6.2 can be recast into the FSM of Figure 6.1,

and implemented using the UDA of Example 6.12.

[Page Type != V

[Page Type = V
' 11

[Page Type = V

[Page Type 1= V

Figure 6.1. Finite State Machine for Sample Query.

We can walk through the code of Example 6.12, as follows:

Lines 2 and 3: we define local table CurrentState that is used to maintain the
current state of the FSM, and the table Memo that holds the last input
tuple.

Line 4: we initialize these tables as the first operation in INITIALIZE.

Line 5 and 6: we check the first tuple to see if it is 'a'. If, and only if, this the
case, the state is advanced to 1 and tuple values updated for state 1,

Line 7: we check if we have the correct input for transitioning to the next state
and, in case of failure, we reset the state back to 0— this corresponds to

126 STREAM DATA MANAGEMENT

EXAMPLE 6.12 Implementation of Example 6.2
1: Aggregate findLpattern(PageNoIn int, ClickTimeln char(16),

PageTypeln char(l)): (PageNo int, ClickTime char(16))
2: { TABLE CurrentState(curState int);
3: TABLE Memo(PageNo int, ClickTime char(16), State int);

INITIALIZE: {
4: INSERT INTO CurrentState VALUES(O);

INSERT INTO Memo VALUES ((0, ", 1), (0, ", 2), (0, ", 3));
5: UPDATE Memo SET PageNo - PageNoIn, ClickTime = ClickTime

WHERE PageTypeln = 'a' AND State = 1;
6: UPDATE CurrentState SET curState = 1 WHERE sqlcode = 0 }

ITERATE: {
7: UPDATE CurrentState set curState = 0

WHERE (curState = 0 AND pageType < > 'a')
OR (curState = 1 AND pagei^pe < > 'd')
OR (curState = 2 AND pageType < > 'p');

8: UPDATE CurrentState SET curState = curState + 1
WHERE sqlcode > 0 AND ((curState = 0 and pageType = 'a')
OR (curState = 1 and pageType = 'd')
OR (curState = 2 and pageType = 'p'));

9: UPDATE Memo SET PageNo = PageNoIn, ClickTime = ClickTimeln
WHERE Memo.State = (SELECT curState FROM CurrentState)
and sqlcode =0;

10: INSERT INTO return SELECT Y.PageNo, Z. ClickTime
FROM CurrentState AS C, Memo AS X, Memo AS Y, Memo
WHERE C.curState = 3 and Y.st - 2 AND Z.st = 3;

11: UPDATE CurrentState SET curState=O WHERE sqlcode = 0}

the "Init" state in Figure 6.1. We are now in the ITERATE clause of the
UDA, and this clause will be is executed for each subsequent input tuple.

Line 8: If line 7 did not execute (sqlcode> 0, indicates the failure of the last
statement), then the transition conditions hold, and we advance to the
next state.

Line 9: once we transitioned into the next state (sqlcode ==0 indicates that the
last statement succeeded), we need to update the current tuple value for
that state.

Line 10: if we are now in the accepting state (State 3), we simply return the
tuple values.

Line 11 : once the results are returned, we must reset the FSM to its "Init"
state (State 0).

This is realized as follows:
1 We use a special UDA (the same for all ESL-TS queries), called the

buffer-manager. This UDA passes to find_pattern set of tuples, as follows.

Time Series Queries in Data Stream Management Systems 127

The last state of the find-pattern UDA is checked, and if this is 0 (denoting
backtracking) then teh buffer-manager calls find-pattern with the "required"
old tuples. Otherwise, the buffer-manager calls the find-pattern UDA on the
current input tuple (which it also stores in buffer since it might needed
later, after backtracking.

2 The buffer-manager first sends some old tuples to find_pattern, and then
take more tuples from the input and give them to findpattern with the
expectation that this will resume the computation from the state in which
it had left it. Thus buffer.manager is reentrant, and remembers the state in
which it was last executed5.

The implementation of the full ESL-TS also supports the star construct,
and aggregates. The '*' construct translates to a self-loop in the FSM, and
the find_pattern UDA was easily extended to handle such self-loops. Finally
aggregates are supported, by storing an additional column in the Memo for
each aggregate in the query (the .previous is implemented in a similar fashion).
Optimization is discussed in the next section.

The general approach for implementing different FSMs is the same across all
different FSMs, therefore we can automate this translation. The resulting UDA
and ESL query can be used on both static tables and data streams. Furthermore,
native SQL optimizations can be applied to both. Figure 6.1 below illustrates
the corresponding FSM.

5. Optimization
The query optimization problems for continuous queries can be very different

from the relational-algebra driven approach of traditional databases. Finite
state automata based computation models are often used for streaming XML
data [Diao and Franklin, 2003], while the generalization of the Knuth, Morris
and Pratt (KMP) text search algorithms [Knuth et al., 1977] was proven very
effective to mininimize execution cost of SQL-TS [Sadri et al., 2001b]. In ESL-
TS, we are extending the KMP algorithm, to optimize memory utilization, and
the execution of concurrent queries.

The KMP algorithm provides a solution of proven optimality [Wright et al.,
1998] for queries such as that of Example 6.1, which searches for the sequence
of three particular constant values. The algorithm minimizes execution by
predicting failures and successes in the next search from those in the previous
search. The algorithm takes a sequence pattern of length m, P — pi.. .pm,
and a text sequence of length n, T = t\... tn, and finds all occurrences of
P in T. Using an example from [Knuth et al., 1977], let abcabcacab be our
search pattern, and babdxibcabcaabcabcabcacabc be our text sequence. The
algorithm starts from the left and compares successive characters until the first
mismatch occurs. At each step, the th element in the text is compared with the

128 STREAM DATA MANAGEMENT

j t h element in the pattern (i.e., U is compared with pj). We keep increasing i
and j until a mismatch occurs.

u
Pj

1
a
a

2
b
b

3
c
c

4

a

ft

5
a
6

6
6
c

7
c
a

8
a
c

9
6
a

10
c
b

11
a

12
a

13
6

14
c

15
a

16
6

17
c

For the example at hand, the arrow denotes the point where the first mismatch
occurs. At this point, a naive algorithm would reset j to 1 and i to 2, and restart
the search by comparing pi to t^ and then proceed with the next input character.
But instead, the KMP algorithm avoids backtracking by using the knowledge
acquired from the fact that the first three characters in the text have been suc-
cessfully matched with those in the pattern. Tndeed, since p± i=- P2,V\ ¥" P'3>
and P1P2P3 = h^h, we can conclude that fe and £3 can't be equal to pi, and
we can thus jump to £4. Then, the KMP algorithm resumes by comparing pi
with £4; since the comparison fails, we increment i and compare fe with p\:

i

U
j
Pi

1
a

2
b
3
c
4
b
5
a
1
a

6
6
2

7
c
3
c

8
a
4
a

9

5
b

10
c
6
c

11
a
7
a

12
a
8
c

ft

13
b
9
a

14
c
10
6

15
a

16
b

17
c

Now, we have the mismatch when j = 8 and i = 12. Here we know that
p i . . . P 4 = P4 • • -P7 and p4 .. . p 7 = £8 . . . £n, pi / p2> and pi / p3; thus,
we conclude that we can move pj four characters to the right, and resume by
comparing p$ to tu.

In general, let us assume that the search has failed on position j of the pattern
and succeeded before that; it is then possible to compute at compile-time the
following two functions (delivering nonnegative integers):

• shift(j): this determines how far the pattern should be advanced in the
input, and

• next(j): this determines from which element in the pattern the checking
of conditions should be resumed after the shift.

The result is of this optimization is that less backtracking is required, when
shift(j) > 0, and fewer elements of the pattern need to be checked, when
next(j) > 0. Thus with KMP, the complexity of searching for the first occur-
rence of a pattern of length m on a text of length n is is reduce to O(rn + n)—
whereas it would be O(m x n) without this optimization [Knuth et al., 1977].
The Optimized Pattern Search (OPS) algorithm, proposed in [Sadri et al., 2001b]

Time Series Queries in Data Stream Management Systems 129

represents a significant generalization of the KMP algorithm in as far as we sup-
port:

• general predicates, besides the equality predicates of KMP, and
• SQL-TS patterns defined using the star and aggregates, are also fully

supported.

In terms of execution speed, the OPS algorithm delivers orders of magnitude
improvements over the naive search algorithm, and it therefore is being used in
ESL-TS. But, in addition to this, we are using OPS to minimize memory usage.
For, instance, let us return to our previous example, where we observed that the
first search failed at t±. Before that, we had succeeded at £2, and then t$; now,
those successes are sufficient to assure that we could first discard $2, and then £3.
Likewise, by the time we reach £12, all the positions before that in memory can
be discarded. This observation is of great practical value in the case of the star
patterns, since a pattern *X can match an input stream of considerable length.
Since ESL-TS only allows users to retrieve the start, the end, and aggregates
functions on *x, we can drop from memory all the X values as soon as they are
scanned.

A final topic of current research in ESL-TS optimization is the interaction
between multiple concurrent queries. Currently, the OPS algorithm is based
on the logical implications between conditions in different phases of the same
query: we are now investigating how to extend our optimization to exploit
implications across conditions of different queries.

6. Conclusion
Time series queries occur frequently in data stream applications, but they

are not supported well by the SQL-based continuous query languages proposed
by most current data stream management systems. In this paper, we have
introduced ESL-TS that can express powerful time series queries by simple ex-
tensions of SQL. We have also shown that these extensions can be implemented
on top of the basic ESL language—thus demonstrating the power of ESL on
data stream applications and the the benefits of its native extensibility mecha-
nisms based on UDAs. We also discussed optimization techniques for ESL-TS,
and showed that they can be used to minimize execution time and memory for
intra-query and inter-query optimization.

Notes
1. These include temporal queries such as until and coalesce, and queries expressible using monotonic

aggregation [Law et al., 2004]
2. The computation can be easily expressed in ESL-TS
3. Although UDAs have been left out of SQL: 1999 specifications, they were part of early SQL-3

proposals, and supported by some commercial DBMS.

130 STREAM DATA MANAGEMENT

4. To conform to SQL syntax, RETURN is treated as a virtual table; however, it is not a stored table
and cannot be used in any other role.

5. "last state" means the value in the CurrentState table of the UDA at the end of the last call to the
UDA. If the CurrentState table is outside of the find pattern UDA then the "last state" can be retrieved from
it.

Acknowledgments
The authors wish to thank Reza Sadri for SQL-TS, and Haixun Wang for his

contribution to ESL.

References
A. Arasu, S. Babu, and J. Widom. An abstract semantics and concrete

language for continuous queries over streams and relations. Technical report,
Stanford University, 2002.

B. Babcock, S. Babu, M. Datar, R. Motawani, and J. Widom. Models and
issues in data stream systems. Tn PODS, 2002.

Shivnath Babu. Stream query repository. Technical report, CS Department,
Stanford University, http://www-db.stanford.edu/stream/sqr/, 2002.

D. Barbara. The characterization of continuous queries. Intl. Journal of
Cooperative Information Systems, 8(4):295-323, 1999.

S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, J. Simeon,
andM. Stefanescu(eds.). Xqueryl.0: An xml query language-working draft 22
august 2003. Working Draft 22 August 2003, W3C,
http://www.w3.org/tr/xquery/, 2003.

D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams - a new class of
data management applications. In VLDB, Hong Kong, China, 2002.

S. Chandrasekaran and M. Franklin. Streaming queries over streaming data.
In VLDB, 2002.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable contin-
uous query system for internet databases. In SIGMOD, pages 379-390, May
2000.

Yanlei Diao and Michael J. Franklin. Query processing for high-volume xml
message brokering. In VLDB 2003, pages 261-272, 2003.

Lukasz Golab and M. Tamer Ozsu. Issues in data stream management. ACM
SIGMOD Record, 32(2):5-14, 2003.

J. Han, Y. Fu, W. Wang, K. Koperski, and O. R. Zaiane. DMQL: A data min-
ing query language for relational databases. In Workshop on Research Issues
on Data Mining and Knowledge Discovery (DMKD), pages 27-33, Montreal,
Canada, June 1996.

J. M. Hellerstein, P. J. Hass, and H. J. Wang. Online aggregation. In SIG-
MOD, 1997.

Time Series Queries in Data Stream Management Systems 131

T. Imielinski and A. Virmani. MSQL: a query language for database mining.
Data Mining and Knowledge Discovery, 3:373-408, 1999.

Informix. Informix: Datablade developers kid infoshelf.
http://www.informix.co.za/answers/english/docs/dbdk/infoshelf, 1998.

H. Jagadish, I. Mumick, and A. Silberschatz. View maintenance issues for
the chronicle data model. In PODS, pages 113-124, 1995.

D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.
S1AM Journal of Computing, 6(2):323-350, June 1977.

Y-N Law, H. Wang, and C. Zaniolo. Query Languages and Data Models for
Database Sequences and Data Streams In VLDB, 2004.

L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven
information delivery. IEEE TKDE, ll(4):583-590, August 1999.

G. Linoff M. J. A. Berry. Data Mining Techniques: For Marketing, Sales,
and Customer Support. John Wiley, 1997.

Sam Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar
Raman. Continuously adaptive continuous queries over streams. In SIGMOD,
pages 49-61, 2002.

R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining associ-
ation rules. In VLDB, pages 122-133, Bombay, India, 1996.

C. Perng and D. Parker. SQL/LPP: A Time Series Extension of SQL Based
on Limited Patience Patterns In DEXA, 1999.

R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K. Beyer, and M. Kr-
ishnaprasad. Srql: Sorted relational query language, 1998.

Reza Sadri. Optimization of Sequence Queries in Database Systems. PhD
thesis, University of California, Los Angeles, 2001.

Reza Sadri, Carlo Zaniolo, and Amir M. Zarkesh andJafar Adibi. A sequen-
tial pattern query language for supporting instant data minining for e-services.
In VLDB, pages 653-656, 2001.

Reza Sadri, Carlo Zaniolo, Amir Zarkesh, and Jafar Adibi. Optimization
of sequence queries in database systems. In PODS, Santa Barbara, CA, May
2001.

S. Sarawagi, S. Thomas, andR. Agrawal. Integrating association rule mining
with relational database systems: Alternatives and implications. In SIGMOD,
1998.

P. Seshadri. Predator: A resource for database research. SIGMOD Record,
27(1): 16-20, 1998.

Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. Sequence query
processing. In Richard T. Snodgrass and Marianne Winslett, editors, Proceed-
ings of the 1994 ACM SIGMOD International Conference on Management of
Data, pages 430-441. ACM Press, 1994.

132 STREAM DATA MANAGEMENT

Praveen Seshadri and Arun N. Swami. Generalized partial.indexes. In
Proceedings of Eleventh International Conference on Data Engineering 1995,
pages 420-427. IEEE Computer Society, 1995.

M. Sullivan. Tribeca: A stream database manager for network traffic analy-
sis. In VLDB, 1996.

D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over
append-only databases. In SIGMOD, pages 321-330, 6 1992.

Haixun Wang and Carlo Zaniolo. Using SQL to build new aggregates and
extenders for object-relational systems. In VLDB, 2000.

Haixun Wang and Carlo Zaniolo. Extending sql for decision support appli-
cations. In Proceedings of the 4th Intl. Workshop on Design and Management
of Data Warehouses (DMDW), pages 1-2, 2002.

Haixun Wang and Carlo Zaniolo. ATLaS: A native extension of sql for data
mining. In SDM, San Francisco, CA, 5 2003.

C. A. Wright, L. Cumberland, and Y. Feng. A performance comparison
between five string pattern matching algorithms. Technical Report, Dec. 1998.
http://ocean.st.usm.edu/~cawright/patteriL matching.html.

Fred Zemke, Krishna Kulkarni, Andy Witkowski, and Bob Lyle. Proposal
for OLAP functions. In ISO/IEC JTC1/SC32 WG3:YGJ-nnn, ANSI NCITS
H2-99-155, 1999.

Chapter 7

MANAGING DISTRIBUTED GEOGRAPHICAL
DATA STREAMS WITH THE GIDB PORTAL
SYSTEM

John T. Sample,1 Frank P. McCreedy,1 and Michael Thomas2

1 Naval Research Laboratory, Stennis Space Center, MS 39529, USA

National Guard Bureau - Counter Drug, Atlanta, GA, USA

Abstract The Naval Research Laboratory (NRL) has developed a portal system, called the
Geospatial Information Database (GIDB^) which links together several hundred
geographic information databases. The GIDB portal enables users to access many
distributed data sources with a single protocol and from a single source. This
chapter will highlight the current functionality of the GIDB Portal System and
give specific applications to military and homeland security uses.

Keywords: geographical information system, web map service, client, server.

1. Introduction
Recently, numerous geographical data collections have been made available

on the Internet. These data collections vary greatly. Some are large collections
of imagery, maps and charts. Others are small stores of highly specialized data
types, for example, fire hydrant locations in Phoenix, Arizona. In addition,
highly volatile data sources, such as weather forecasts, are available. These
many data sources offer access to geographical information at an unprecedented
level. However, the greater amounts, types and sources of data produce greater
complexity in managing the data.

134 STREAM DATA MANAGEMENT

To provide access to the many different types of geographic data sources in a
simple and straightforward manner, the Naval Research Laboratory (NRL) has
developed the Geospatial Information Database Portal System (GIDB)1.

The GIDB is unique in its ability to link many different data sources and
make them available through a single source and with a uniform protocol.

2. Geographic Data Servers
To better understand the requirements, challenges, and possibilities involved

with integrating many different geographic data servers, detailed descriptions
of the different kinds of geographic data, servers, and communication protocols
are needed.

Figure 7. /. Vector Features for Nations in North America.

2.1 Types of Geographic Data
In general terms there are two main types of geographic data, vector and

raster. Vector geographic features use geometrical primitives such as points,
lines, curves, and polygons to represent map features such as roads, rivers,
nations. Raster geographic data types are generally structures that consist of
rectangular arrays of pixels or points of with given values. This can include
scanned maps and charts, aerial, satellite, and sonar imagery and terrain and
bathymetric grids.

Figures 7.1, 7.2 and 7.3 show examples of vector and raster map data. Fig-
ure 7.1 shows a map with vector features representing countries in North Amer-
ica. Figure 7.2 shows shaded relief (elevation) in the form of an image for the
same area. Figure 7.3 shows the two types of features together in the same
view.

These are the most basic categories of geographic data types and typical of
the information provided by most geographic data servers. Three dimensional

Managing Distributed Geographical Data Streams with the GIDB Protal System 135

Figure 7.2. Shaded Relief for North America.

Figure 7.3. Combined View From Figures 7.1 and 7.2.

136 STREAM DATA MANAGEMENT

and multi-media types are also available, but not directly considered in this
chapter.

2,2 Types of Geographic Data Servers
As previously mentioned, geographic data servers can be quite varied. Some

are quite complex and built on fully functional database management systems
(DBMS). Others are simply transport mechanisms for sensor data or other
observations.

The most basic types of geographic data servers are often as simple as a web
page or FTP (File Transport Protocol) site with geographic data files available.
These files can be static or dynamic. Many organizations employ sites such as
this. They are simple and inexpensive to setup and straightforward to use. For
example, the United States Geological Survey (USGS) and the United States
Department of Transportation each have large datasets of public geographic data
available for download from their websites. These types of sites usually lack
the ability to query based on area of interest (AOI), time or theme. However,
they are useful data sources, especially when used with a portal system such
as the GIDB, which provides its own query functionality for AOI, time, and
theme.

Tn addition to simple web and FTP sites, there exist special purpose servers
that produce small data products which do not require sophisticated interfaces.
An example of this type of system could be a server which sends out auto-
generated emails with tropical storm warnings. Also, consider a system that
makes available the locations of commercial aircraft in route. These types of
systems can have limited impact on their own. However, when integrated into
a more complete system, they become much more useful.

The next broad category of geographic servers consists of more comprehen-
sive software systems that can provide a user with a complete, though often
specialized, map view. These are usually expensive and complicated server
systems, which include a DBMS, fully functional GIS, and some type of map
renderer. Most of these systems require users to use a specific client software
package to access the server. Several vendors currently provide these types of
software; examples are ESRTs ArcIMS and AutoDesk's MapGuide.

These systems provide query functionality for a variety of fields including
AOI, time and theme. They display data in different layers on a interactive map
view. While very powerful, they are almost always restricted to accessing data
that resides under the control of the server. Thus, the system is responsible for
data maintenance, backups, updates, etc.

There are other types of geographic data servers; however, the provided
examples are sufficient to show the variety of systems currently in use and

Managing Distributed Geographical Data Streams with the GIDB Protal System 137

indicate the challenges involved in producing a system which can integrate all
these types of servers into a comprehensive solution.

2.3 Transport Mechanisms
Transport mechanisms refer to the network communication protocols used

to communicate data across the network. Within the current network struc-
ture of the Internet there are several levels of abstraction from the hardware
level, on which the various protocols reside. For a complete discussion of net-
work/Internet protocols see [Tanenbaum, 2003]. The basic data protocol of
the internet is TCP/IP (Transport Control Protocol/Internet Protocol). This is
a general purpose protocol for the transport of generally unformatted data. On
top of TCP/TP a large variety of other special purpose protocols are built. This is
called the "application" layer. Examples of these are HTTP (Hypertext Trans-
port Protocol), FTP, SMTP (Simple Mail Transport Protocol). At this level of
abstraction, the data takes on slightly more structure, and requests, responses,
and sessions can be managed.

HTTP is by far the preferred method for data transfer in this environment.
Virtually all web pages and many web based applications are provided to clients
via HTTP. It was designed to handle the typical request/response paradigm of
webpage browsing. In some cases, HTTP is used despite its not being the most
appropriate protocol. This is because many organizations' security restrictions,
firewalls and proxy servers exclude virtually any network traffic that is not
HTTP based. Under these restrictions, many systems are forced to use HTTP.

HTTP is a "stateless" protocol; therefore, each interaction is independent
from those preceding it. Contrast this to FTP, in which users "log in" for a
session, conduct several transactions and then "log out." Also, HTTP does not
directly handle delayed responses. Contrast this to SMTP, in which messages
can be passed at will between various parties. For example, consider the case in
which the response to a request requires several hours (or days) to formulate. In
that case the HTTP request/response paradigm is not sufficient. Also, consider
that the response might never be truly complete. For example, one might query
a server which contains up to date locations of oil tankers. A client system
could request to be notified any time updated positions become available; thus
the server would need to send out updates frequently. In this case, the server
initiates communication with the client. This is a reversal of the typical server-
client relationship, and would require a different communication protocol.

Beyond the level of standard communication protocols, there are many more
details to be resolved to communicate effectively with a geographic data servers.
Authentication details, query languages, and data formats are just examples of
particulars which must be agreed upon between those providing data and those
requesting data. Unfortunately, most current comprehensive geographic data

138 STREAM DATA MANAGEMENT

Table 7.1. Selected OGC Geographic Standards.

Standard Name Description

Web Map Service (WMS)

Web Feature Service (WFS)

Geography Markup Lan-
guage (GML)

Catalog Interface (CAT)

Web Coverage Service
(WCS)

Provides four protocols in support of the creation and
display of registered and superimposed map-like views
of information that come simultaneously from multiple
sources that are both remote and heterogeneous.
The purpose of the Web Feature Server Interface Specifi-
cation (WFS) is to describe data manipulation operations
on OpenGIS® Simple Features (feature instances) such
that servers and clients can "communicate" at the feature
level.
The Geography Markup Language (GML) is an XML
encoding for the transport and storage of geographic in-
formation, including both the geometry and properties
of geographic features.
Defines a common interface that enables diverse but con-
formant applications to perform discovery, browse and
query operations against distributed and potentially het-
erogeneous catalog servers.
Extends the Web Map Service (WMS) interface to allow
access to geospatial "coverages" that represent values
or properties of geographic locations, rather than WMS
generated maps (pictures).

servers provide data in proprietary formats through proprietary protocols to
proprietary clients. This can make integrating multiple types of geographic
data servers very challenging, if not impossible.

2,4 Geographic Data Standards
Given the variety of the data types, servers and communication protocols, one

can see why integrating all these geographical data sources is such an imposing
problem. One solution to this problem is the adoption of various standards for
geographical data. The OpenGIS Consortium (OGC) has proposed a number of
standards for communicating geographic data and metadata. These standards
are available from http://www.opengis.org. Table 7.1 lists and describes the
most significant OGC standards [OpenGIS].

These standards are generally sufficient to handle the problem of geographic
data transfer. However, many organizations lack the funding or personnel to
replace or upgrade their existing data servers to comply with these standards.
Thus, the variety of proprietary access protocols is likely to persist well into the
future.

Managing Distributed Geographical Data Streams with the GIDB Protal System 139

2.5 Geographic Data Streams
While many geographic data servers can be viewed as traditional database

data sources, there are instances in which it is better to model the data source
as a stream. There are numerous examples of geographic data sources which
behave more like streams than databases. Consider a server which monitors a
series of weather stations and outputs weather observations continually. The
number of available observations and the frequency of updates vary, but the
updates continue indefinitely. Thus, like a stream, this data source is potentially
unbounded in size. One could only attempt to obtain a snapshot of the data at
a specific moment in time, and that snapshot becomes out-of-date quickly.
Furthermore, the size of the snapshot of data might be prohibitively large. The
best way to handle this data is to treat it as a stream of information, and sample
a practically feasible amount of data from the stream for display.

In the examples section of this chapter, two scenarios will presented in which
data sources that behave like streams are integrated into the GIDB framework
for traditional data sources.

3. The Geospatial Information Database Portal System
Military and homeland security organizations face a common need for map-

ping products that are both mission relevant and current. These datasets can
include fairly static data types like road maps and aerial photography, but they
also have a need for dynamic data types like weather maps. In addition, any
system to be utilized by a broad user community must be simple to use and cost
effective. The GIDB Portal System is unique in meeting these needs.

Within this user community, required geographic datasets are often compiled,
recorded and delivered by non-networked means on a periodic basis. Once
received, they are stored and served locally. This process produces datasets
that are static and revised infrequently. Furthermore, the costs of warehousing
very large datasets locally are prohibitive for many smaller organizations, such
as local sheriffs and police departments.

The obvious solution to this problem is to provide users the ability to connect
to the datasets they need over a dynamic network connection. Thus they have
current datasets, which require no local maintenance. However, this is not a
trivial task and includes many significant challenges. This section will describe
how the GIDB Portal system solves the technical challenges involved with
designing and deploying a system that meets these needs.

3.1 GIDB Data Sources
No single dataset contains all of the geospatial information required for the

variety of military and homeland security operations supported by the GIDB

140 STREAM DATA MANAGEMENT

Portal System. Some operations can require data from as many as twenty
different sources. These include geospatial data servers from federal, state and
local government organizations and others.

Thus, if a typical user wants to combine custom-generated maps with real-
time weather data, digitized raster graphics, political boundary and road data
and census data, that user would have to spend a considerable amount of time
finding each of those data types individually and integrating them together. Due
to the diversity of the data suppliers, one encounters many different types of data
servers among the available sources. After locating the different data sources,
the user must gain access to them via a variety of proprietary access methods.
Finally, the data types must be converted into a format that is compatible with
the user's GIS of choice. This is a formidable task and hardly practical for
everyday use. In emergency situations where speed is a requirement, this is
infeasible.

Therefore, the primary technical requirement for the GIDB Portal System is
to connect many different data sources via many different access protocols. This
also necessitates that the systems be linked through a single location. Also, this
linking should be truly dynamic. The portal should maintain an active directory
of data sources and "know" when sources are online and offline. Furthermore,
it should have fall back mechanisms for cases in which certain data sources
are temporarily unavailable. Figure 7.4 shows the relatively simple concept:
that multiple distributed data sources can be integrated remotely to appear as
a single source. In this figure the listed data sources are just examples of the
many types of data sources for which interfaces have been developed.

3.2 GIDB Internals
The core of the GIDB Portal System is the Apache/Tomcat server framework.

This configuration was chosen to take advantage of a robust HTTP web server
with a Java Servlet engine. The web server component, Apache, manages
network connections with a variety of client software packages. The Java
Servlet engine, Tomcat, allows the rich Java library of database, networking,
GIS and other components to be used.

Linking data sources within this framework is accomplished by first defining
a standard set of data types and query types that encapsulate the functions of
a generalized geospatial data server. This standard set in the GIDB is fairly
broad. It contains data types for vector and raster map data, meta-data, and
extensible user defined data types. Queries based on scale and AOI are provided
in addition to methods for acquiring metadata and browsing available data types.
This framework constitutes the first level of abstraction in connecting many
distributed sources and making them appear as one source. In practical form,

Managing Distributed Geographical Data Streams with the GIDB Protal System 141

is

OGC (WMS, WFS)

ArcIMS

MapGuide

| O C D D o D standard Formats
a U

METCAST Weather

GIDB Portal System

Single
Access

Point for
Many Data

Sources

Distributed GIS
Data Sources

Figure 7.4. GIDB Data Source Architecture.

142 STREAM DATA MANAGEMENT

the standard set of data types and query methods are defined in a collection of
Java classes and interfaces.

This collection of Java classes and interfaces encapsulates all that is required
to link a networked data source via a proprietary or custom access protocol to
the GIDB. In order to link the external data servers, the data types provided by
the server are converted to the GIDB standard format, and the query methods
required by the GIDB interface are implemented to function with the query
methods provided by the external source [Chung et al , 2001]. The completed
interface between the GIDB and the external interface is called a "driver." The
driver also maintains connections to the various data sources. Most of the
connected data sources use HTTP based network communication.

The key feature of the GIDB, one that distinguishes it from other solutions,
is that all the code and configuration needed to perform the linkage are located
within the GIDB portal system installation. Thus, the provider of the external
data source is not required to reconfigure their system in any way. This is the
most significant reason for the rapid growth of the number of data servers avail-
able in the GIDB. The researchers and developers of the GIDB can configure
and catalog data sources around the world without directly interacting with data
providers.

Currently a variety of vendor-specific access protocols and data types are
supported in the GIDB. These include ESRI ArcIMS, ESRI shape, AutoDesk,
Map Objects, METCAST, TerraServer, Census Tiger, and Web Mapping Ser-
vice. Also, U.S. Department of Defense standard mapping products in VPF
(vector product format), CADRG (compressed ARC digitized raster graphic)
and CIB (controlled image base) are supported and provided via the GIDB to
authorized users.

Given the driver architecture of the GIDB portal system, we can further
elaborate on the graphic in Figure 7.4. Consider Figure 7.5, this graphic shows
the relationship between each data source to the GIDB. Each data source is
connected to the GIDB through a driver component, which converts the native
queries and formats of the driver to those used by the GIDB.

3.3 GIDB Access Methods
The previous sections describe how different types of data spread out over

multiple data sources can be connected and made available through a single
source. This section will detail how this single source distributes data to users
through a variety of methods. The GIDB standard interface for linking data
sources requires that all the data sources be transformed into a common view
within the GIDB. Therefore, from a user perspective, the many different data
sources do not appear as many sources with many different access protocols;

Managing Distributed Geographical Data Streams with the G1DB Protal System 143

Iiaci OGC (WMS, WFS)

l!DCi ArcMS

MapGuide

DoD Standard Formats

METCAST Weather

GIDB Portal System

Driver

Driver

Driver

Driver

Driver

Distributed GIS
Data Sources

Figure 7.5. Detailed View of GIDB Data Source Architecture.

144 STREAM DATA MANAGEMENT

Table 7.2. GIDB Client Software Packages.

Client Software Package Benefits

Web Browser Based "Thin" 1. Requires No Installation
Client 2. Simple to Use

3. ISO 19115 Theme Based Data Access
4. Includes User Registration System

Advanced Client (Full 1. Advanced Map Creation Options
Stand Alone Java Applica- 2. Includes Encryption and Compression of Mapping
tion) Data

3. Includes Ability to Save Generated Maps to Local
System
4. Fully Extensible for Data Format, Display, Input and
Output

Web Mapping Service 1. Allows Compatibility with Web Mapping Service
Client Based Clients and WMS Portals

GIDB API 1. Allows GIDB data sources and themes to be used
within independently developed applications

instead, they appear as a single data source with many different categories of
data and a single access protocol [Wilson et al., 2003].

From this point, constructing client software to allow access to the GIDB
portal is straightforward. The GIDB framework provides all of the available data
types and query methods. The core web/application server provides network
access to the GIDB through HTTP. Custom protocols are available for accessing
the system, but HTTP is the preferred method for simplicity and ubiquity. There
are several client software packages available for accessing the GIDB portal.
Table 7.2 lists the client packages and their benefits. Figure 7.6 shows the
relationship of the various client packages to the GIDB portal. Each client
package has access to the same data from a common access point.

3,4 GIDB Thematic Layer Server
The GIDB can successfully connect many different sources and can present

the data to a variety of client software packages. However, as the number of
data sources has grown from around 10 to over 500, the complexity of browsing
through the thousands of available data layers has become unmanageable. This
is especially true for novice GIS users who have little or no experience locating
needed data and merging it with other data types.

The solution to this problem is to add another layer of abstraction between
the user and the original data. Instead of listing all the available data sources

Managing Distributed Geographical Data Streams with the GIDB Protal System 145

and layers in one long list, we have adopted an alternative method that presents
the layers according to ISO 19115 standard themes. Table 7.3 presents the top
level themes according to this specification [Peng and Tsou, 2003].

OGC(WMS,WFS)

GIDB Portal System

•
Web Browser (HTML)

GIDB Client Application

GIDB API

GIDB Client
Systems

Figure 7.6. GIDB Client Access Methods.

These themes represent the top level presentation of data types to the end
user. As an example, under the theme "Biologic and Ecologic Information"
in the GIDB the following data layers are listed: Biological Distinctiveness,
Ecoregion Divisions, Ecoregion Domains, Ecoregion Provinces, NOAA Mus-
sel Watch, TNC Ecoregions, Terrestrial Ecoregions, Threat to Terrestrial Ecore-
gions, US Fish & Wildlife Refuges, USGS NDVI Vegetation Index, and WWF
Ecoregions. These eleven data layers are representative of over 100 data layers
stored in up to seven different data servers. Thus, users of a GIDB client pack-
age can quickly get to the required data, with little or no knowledge of the data
location or configuration. The list of themes allows users to quickly navigate
through the vast amount of data available in the GIDB. This component of the
GIDB is called the "Theme Server" and is the most valuable feature to new
users.

146 STREAM DATA MANAGEMENT

Table 7.3. ISO 19915 Standard Geographical Themes.

ISO 19915 Standard Geographical Themes

1. Administrative and Political Boundaries
2. Agriculture and Farming
3. Atmospheric and Climatic Data
4. Base Maps, Scanned Maps and Charts
5. Biologic and Ecologic Information
6. Cadastral and Legal Land Descriptions
7. Cultural and Demographic Information
8. Business and Economic Information
9. Earth Surface Characteristics and Land Cover
10. Elevation and Derived Products
11. Emergency Management
12. Environmental Monitoring and Modeling
13. Facilities, Buildings and Structures
14. Fresh Water Resources and Characteristics
15. Geodetic Networks and Control Points
16. Geologic and Geophysical Information
17. Human Health and Disease
18. Imagery and Photographs
19. Ocean and Estuarine Resources and Characteristics
20. Tourism and Recreation
21. Transportation Networks and Models
22. Utility Distribution Networks

Much work must be done to make the GIDB Theme Server function ef-
fectively. Consider the example in which a user browsing the "Tourism and
Recreation" theme selects the "State Park Areas" data layer. If the current map
view occupies ten states, then ten servers have to be contacted and ten different
data sets have to be requested. The GIDB Theme Server does all this "behind
the scenes," and even though the data comes from all over the country, it appears
as one source and one layer to the end user. The Theme Server also manages
multiple data layers for multiple scales. As a user moves across different map
scales, layers are switched to provide the most appropriate data.

For the Theme Server to appropriately link and merge data sets, extensive
cataloging of the data must take place ahead of time. This is the most time
consuming activity in maintaining the GIDB portal. New servers and data
layers are continually appearing and being linked into the system. However, the
effort in cataloging and linking in the data sources is well invested. The GIDB
portal allows data sources to be configured once and then they are permanently
available to all GIDB users.

The Theme Server completes the data type and source abstraction software
architecture which makes the GIDB portal the best available system for linking

Managing Distributed Geographical Data Streams with the G1DB Protal System 147

distributed data sources. The original data is spread out over the world on
many different servers, and appears in many different formats requiring multiple
access protocols. The GIDB portal provides a single access point, single access
protocol, and a coherent theme-based data layout.

4. Example Scenarios
The following examples show configurations of the GIDB Portal System

that provide an integrated view of multiple types of data sources. The first
scenario is a hypothetical illustration to demonstrate the challenges involved in
managing streamed object locations. The second example is a description of
the actual manner in which the GIDB manages weather data that it obtains in a
variety of ways.

4.1 Serving Moving Obj ects
To fulfill the requirements of this scenario, the GIDB Client must display

objects on the map display as the move around the earth. These objects can
include commercial aircraft, military equipment, and ocean going vessels. Sup-
pose that several servers provide this information to the GIDB. The first server,
Server 1, is a traditional database system that allows queries at any time. This
server contains the locations of oil tankers around the world.

Another source, Server 2, does not permit queries but sends out data messages
at a constant rate, and each message contains the locations of ships in a naval
battle group. The third and final server, Server 3, sends out messages containing
sightings of "enemy" ships. The sightings are not predictable, and are sent out
whenever they are available.

At this point it is useful to discuss in more depth, the traditional client/server
framework. The client in the client/server relationship is generally the party
who initiates communication. This is the case with web browsers, who request
web pages from web servers. Likewise, servers traditionally wait for requests
to come from clients and then service the requests in some manner.

The first server in this scenario follows the traditional framework. However,
the other two do not. They initiate communication when they send out mes-
sages. This presents a difficulty for the GIDB. Our framework was designed to
deal with passive servers that wait for data requests and then respond with the
requested data.

The software structure of the GIDB Server, with modification, is able to
accept incoming data messages. However, this is not true for the GIDB client
application. It has been designed to act only as a client, and it can only receive
data in the form of responses to HTTP requests. This is more a security re-
striction than a technical requirement. As mentioned in Section 2.3, this type
of restriction is fairly common. Servers readily accept many incoming con-

148 STREAM DATA MANAGEMENT

nections; therefore, they are often considered more susceptible than clients to
attack or interference. Because of this, the GIDB client application is unable
to accept incoming connections.

Since the GIDB client application cannot accept incoming messages from the
server, we have to model the effect of server initiated messages. The solution is
straightforward. We simply configure the client to request updates or refreshes
from the GIDB server at a frequent pace. The GIDB server takes the requests
from the client and sends back the latest data available from its Server 1, the
GIDB server simply passes on the query from the client to the other server.
Figure 7.7 shows diagrams the system relationships in this scenario.

Server 1
Traditional Query-able

Database Interface

Server 2

!ai=a Messages Sent at
Constant Rate

Server 3

tmnnnntmimntti

Messages Sent at
Variable Rate

GIDB Server

—

pi

IIIIIIIIIIIIIIIIIIINIIII

GIDB Client

Client Refreshes Frequently to
Simulate Server Pushed Data

Figure 7.7. Diagram for First Scenario.

In this scenario the GIDB client is able to display the locations of the various
objects on a map display as updates of the locations are received/requested by
the GIDB server.

Managing Distributed Geographical Data Streams with the GIDB Protal System 149

4.2 Serving Meteorological and Oceanographic Data
The GIDB currently integrates meteorological and oceanographic data from

several different sources. Four sources will be considered in this discussion to
demonstrate the variety of ways in which the GIDB must be able to communicate
with data servers. The first weather source is METCAST, which is produced
by the U.S. Navy's Fleet Numerical Meteorological and Oceanographic Center.
METCAST data is provided through a custom retrieval service. Through the
service, the GIDB requests an XML (Extensible Markup Language) catalog.
This catalog lists all the products which are available on the server. These
products include satellite weather imagery, weather observations in text form,
and binary output from meteorological numerical models.

The GIDB periodically requests, downloads, and parses the catalog of prod-
ucts. It then adds the list of available products in the catalog to its internal
listing of available data types. Thus the user can browse the list of available
products from the METCAST server along with the listing of everything else
in the GIDB. When the user requests METCAST data, the GIDB converts the
users request into one compatible with the METCAST retrieval service. It then
requests, downloads, and displays the requested data. Note that the data is never
cached or stored on the GIDB; it is simply passed through to the user.

The second source of weather data in the GIDB is provided by NCEP (Na-
tional Centers for Environmental Prediction). This data is very similar in content
to that available from METCAST; however, NCEP does not provide a retrieval
service, it simply puts its data on a publicly accessible FTP server. Thus, the
GIDB periodically logs in to the server, and browses available data types. From
this browse session, a listing of available products is generated. When a GIDB
user requests a product from this server, the GIDB initiates another FTP session,
and downloads the requested data. The data is then converted to an appropriate
format and passed to the user.

The third source of data in this example is a WMS server provided by the
Norwegian Meteorological Service. Using the WMS "GetCapabilities" request,
the GIDB is able acquire a listing of available products. Thus, when a user
requests data from this site, the GIDB requests it using the appropriate WMS
formatted request. The GIDB the converts the WMS response to the appropriate
format and passes it to the user. In this case the data is not cached or stored in
the GIDB.

The previous three cases are similar, for in each case the download of the data
is in response to a user request. However, consider the fourth method which the
GIDB uses to get weather data. In this case, the GIDB receives periodic emails
fromNLMOC (Naval Atlantic Meteorology and Oceanography Center). These
emails contain geographic data files with storm alerts, locations of weather
events, etc. They are sent out by the remote server to the GIDB whenever

150 STREAM DATA MANAGEMENT

updated data becomes available. In this case the data has to be treated as a
stream. Specific queries on the data, determinations of the size and scope of
the data, and frequency of updates are not available. However, for this data
to be part of the GIDB, it has to appear as a traditional data source. In other
words, this data source has to allow queries and respond to the user requests.
The solution is that the GIDB simply caches all the emails from the source and
acts as the database for this source. When the emails are received, the data they
contain is converted in the appropriate format and indexed within the GIDB.

While the various methods for acquiring data in this scenario are all fairly
straightforward, they are nonetheless quite different from one another. As such,
the GIDB serves a significant role in integrating all these sources into a coherent
(and virtual) source. To the GIDB user, all four data sources appear to be one
source, with one query protocol, and one data format. Furthermore, using the
GIDB client application, the user can visualize data from all four sources in one
place.

Acknowledgements
The Naval Research Laboratory would like to thank the National Guard

Bureau for funding the research and deployment of the GIDB Portal System.
Their sponsorship has resulted in the enhancement of the GIDB Portal System to
meet an expanded set of homeland security and law enforcement requirements.
Furthermore, under this research program, the GIDB Portal System as grown to
integrate over 500 data sources, and is used by over 5000 users per month. For
more information on the National Guard Bureau's Digital Mapping System, see
http://dms.gtri.gatech.edu.

Notes
1. GIDB is a registered trademark of Naval Research Lab.

References
Chung M., R. Wilson, K. Shaw, F. Petry, M. Cobb (2001). Querying Multiple

Data Sources via an Object-Oriented Spatial Query Interface and Framework.
In Journal of Visual Languages and Computing, 12(1), February:37-60.

OpenGIS Documents, Retrieved on 1st June, 2000 from the World Wide
Web: http://www.opengis.org/specs/?page=baseline

Peng, Zhong-Ren and Ming-Hsiang Tsou.(2003). Internet GIS: Distributed
Geographic Information Services for the Internet and Wireless Network. Wiley
and Sons, Hoboken, New Jersey.

Tanenbaum, Andrew (2003). Computer Networks. Prentice Hall PTR, Upper
Saddle, New Jersey.

Managing Distributed Geographical Data Streams with the GIDB Protal System 151

Wilson, R., M. Cobb, F. McCreedy, R. Ladner, D. Olivier, T. Lovitt, K.
Shaw, F. Petry, M. Abdelguerfi (2003). Geographical Data Interchange Using
XML-Enabled Technology within the GIDB System. Chapter 13, In XML Data
Management, Akmal B. Chaudhri, editor, Addison-Wesley, Boston.

Chapter 8

STREAMING DATA DISSEMINATION USING
PEER-PEER SYSTEMS

Shetal Shah, and Krithi Ramamritham
Department of Computer Science and Engineering
Indian Institute of Technology* Bombay, India
shetals,krithi@cse.iitb.ac.in

Abstract Many characteristics of peer-peer systems make them suitable for addressing the
traditional problems of information storage and dissemination. Peer-peer sys-
tems give a distributed solution to these problems. Typically, peer-peer systems
(research prototypes or commercial systems) have dynamic topologies where
peers join and leave the network at any point. However, the information that is
stored and queried in these peers is assumed to be static. Most of these current
peer-peer systems do not deal with data that is changing dynamically, i.e., data
that changes rapidly and unpredictably. This chapter first examines a few of
the existing peer-peer systems and the various issues that they address. It then
discusses some of the research issues in using peer-peer systems for managing
dynamic or streaming data and presents a peer-peer solution for the dissemination
of dynamic data.

Keywords: data dissemination, cooperation, data coherence, peer-peer systems.

1. Introduction
The Internet and the web are increasingly being used to disseminate fast

changing data such as sensor data, traffic and weather information, stock prices,
sports scores, and even health monitoring information [Neoganesh]. These
data items are highly dynamic, i.e., the data changes continuously and rapidly,
streamed1 in real-time, i.e., new data can be viewed as being appended to the
old or historical data, and aperiodic, i.e., the time between the updates and the
value of the updates are not known apriori. Increasingly, users are interested in
monitoring such data for on-line decision making. The growth of the Internet
has made the problem of managing dynamic data interesting and challenging.

154 STREAM DATA MANAGEMENT

Resource limitations at a source of dynamic data limit the number of users
that can be served directly by the source. A natural solution to this is to have a
set of repositories which replicate the source data and serve it to users in their
geographic proximity. Services like Akamai and IBM's edge server technology
are exemplars of such networks of repositories, which aim to provide better
services by shifting most of the work to the edge of the network (closer to
the end users). Although such systems scale quite well for static data, when
the data changes rapidly, the quality of service at a repository farther from the
data source deteriorates. In general, replication reduces the load on the sources
and increases the number of users served, but replication of time-varying data
introduces new challenges. When a user gets data from a repository, (s)he
expects the data to be in sync with the source. This may not be possible at
all times with rapidly changing data due to the inherent delays in the system.
Neither is broadcasting all updates to all users a feasible solution as this will
increase the number of messages in the system leading to further delays and
may even result in bottlenecks. In other words, unless updates to the data are
carefully disseminated from sources to repositories (to keep them coherent/in
sync with the sources), the communication and computation overheads involved
can result in delays and lead to scalability problems, further contributing to loss
of data coherence.

In this chapter we look at some of the techniques: algorithms and architec-
tures for the dissemination of fast changing data. We first take a look at some
of the existing peer-peer systems2 and the issues that they address and then turn
our attention to a peer-peer system for dynamic data dissemination.

2. Information-based Peer-Peer systems
In this section, we present some information based peer-peer system^. We

first take a look at the issues that need to be addressed when building any peer-
peer system and then describe how a few of the information-based systems.

2.1 Summary of Issues in Information-Based Peer-Peer
Systems

We first summarize the issues that many information based peer-peer systems
address and then take a brief look at some of the existing peer to peer systems
for information storage. Some of the issues are:

• Search: As data is stored on a large scale in peer-peer systems, one needs
to be able to search for the required data effectively. This outlook has led
to wealth of research on searching in the peer-peer community. Different
kinds of information storage applications have led to different kinds of
search mechanisms:

Streaming Data Dissemination using Peer-Peer Systems 155

- Centralized versus Distributed: In peer-peer systems like Napster,
the search is done by a centralized component. Queries are directed
to this centralized component which returns a list of peers contain-
ing the requested data. In other peer-peer systems, like Gnutella,
DHTs, there is no centralized component and hence the search is
distributed.

- Exact match searches, keyword searches, wild card searches and
other complex searches: Peer-peer systems like Distributed Hash
Tables [Ratnasamy et al., 2001],[Stoica et al., 2001], provide an
extremely efficient way to look up an entity in the system. Typically,
the search takes a single key and returns a match. They are used in
applications which primarily want exact match answers. However,
there is a lot of ongoing research to build on this simple operation
to handle keywords and wild cards.
Keyword searches are an inherent part of the design of some peer-
peer systems. Given a set of keywords, they return a list of entities
that completely or partially match the keywords. Peer-peer systems
like Gnutella [Gnutella], Gia [Chawathe et al., 2003] provide this
kind of search.

- Popular vs non-popular. Some of the search techniques (e.g., Gia
[Chawathe et al., 2003]) developed are very efficient for popular
content but take time for data which is relatively rare. On the other
hand, search mechanisms developed for DHT's take the same time
for any data irrespective of its popularity.

- Exhaustive vs Partial: This criterion determines the number of
matches that the system returns - whether it returns all matches
or only the first n matches, n > 1.

• Topology: The topology of the peer-peer system is governed by many
factors. Some of them are:

- Centralized Component or Completely Distributed: Some peer-
peer systems (like Napster) have a centralized component which
might take care of administration and other functionality like keep-
ing track of current peers, etc. In a completely distributed system
these functionalities are also distributed amongst the peers.

- Dedicated or Dynamic: Some peer-peer systems consist of ded-
icated peers which are a part of the system. However, in many
peer-peer systems the topology is dynamic, i.e., the peers come and
go and hence the topology build algorithms are also adaptive to han-
dle this. Some peer-peer systems follow the middle path wherein

156 STREAM DATA MANAGEMENT

some of the peers are fixed (dedicated), whereas the rest join and
leave the network as they desire.

- Search Criteria: Just as an application using a peer-peer system
governs the search criteria to a large extent, so is the topology of the
system governed by search functionality. The peer to peer systems
are built in such a manner that the search algorithms are efficient.

• Fault Tolerance: In any system, one needs to to be prepared for failures,
for e.g., peer crashes and network failures. In addition to this, in a dy-
namic peer-peer system peers may come and go at any time. Hence, peer-
peer systems need to be fault tolerant. A well designed peer-peer system
has fault tolerance built into it. Typically, fault tolerance is achieved
through redundancy. The exact techniques for achieving fault tolerance
vary from system to system.

• Reputation: One reason why peer-peer systems, where peers join and
leave the network as they desire, are attractive is that the peers get a certain
amount of anonymity. However, this leaves the systems open to malicious
peers who are interested in sending malicious/invalid data to other peers.
One way to detect malicious peers is by assigning reputations to the peers
which gives an indication of the trustworthiness of a peer. To do this in a
fair and distributed fashion is a challenging task. Finding the reputation
of peers is another hot topic of research with various kinds of schemes
proposed: (i) global schemes where all peers contribute to calculation
of the reputation of a peer, (ii) local schemes where peer reputations are
calculated locally and (iii) mix of the two schemes. [Marti and Molina,
2004] proposes a local scheme wherein each peer calculates the reputation
of other peers as the % of authentic files it got from that peer. Additionally,
authors of [Marti and Molina, 2004] propose algorithms with a mixed
flavour of local and global where one can also get reputation information
from other friend peers or known reputed peers.

• Load Balancing: Overloading any part of a system, potentially, leads to
poor performance of the system. Unless load balancing is inbuilt in the
design of a peer-peer system one can easily come across scenarios where
some (or all) the peers in the system, are overloaded, leading to degraded
performance. For e.g., in Gnutella, queries are flooded in the network.
A large number of queries could lead to the overloading of the nodes,
affecting the performance and the scalability of the system.

2.2 Some Existing Peer-Peer Systems
Having presented the issues that peer-peer systems are designed to address,

we now examine a few of the existing peer to peer systems, to understand how

Streaming Data Dissemination using Peer-Peer Systems 157

they address these issues. We also discuss the specific applications, if any, for
which they are targeted.

2.3 Napster
Napster was the first system to use peers for information storage. The target

application was the storage and sharing of files containing music. Peers could
join and leave the Napster network anytime. Napster had a centralized com-
ponent which kept track of the currently connected peers and also a list of the
data available at each peer. A queiy for a music file went to the centralized
component which returned a list of peers containing this file. One could then
download the file from any of peers given in the list. Napster achieved a highly
functional design by providing centralized search and distributed download. In
Napster as more peers joined in the network, more was the aggregate down-
load capacity of the network. However, having a centralized component in the
system increases the vulnerability of the system to overloading and failures.

2.4 Gnutella
Gnutella [Gnutella] is a peer-peer system which is completely distributed. It

is an unstructured peer-peer system wherein the topology of the network and the
position of files in the network are largely unconstrained. The latest version of
Gnutella supports the notion of ultra peers or super peers wherein these nodes
have a higher degree (i.e., more number of neighbour^4) than the rest of the
nodes in the network.

Gnutella supports keyword-based queries. Typically, a query matches more
than one file in the network. Queries for files are flooded in the network in a
limited radius. To locate a file, a node queries each of its neighbours, who in
turn query each of their neighbours and so on until the query reaches all the
nodes within a certain radius of the original querier. When a peer gets a query,
it sends a list of all the files matching the query to the originating node.

As queries tend to flood the network, this schema is fairly fault tolerant.
Even if nodes join and leave the network in the interim, the chances that the
originator will get back a response is high. Flooding however increases the load
on the nodes and hence this scheme does not scale too well for a large number
of queries.

2.5 Gia
Gia [Chawathe et al., 2003] is a unstructured peer-peer system like Gnutella

with the goal of being scalable, i.e., to handle a higher aggregate query rate and
also to be able to function well under increasing system size.

Gia has two kinds of peers, super nodes or high capacity peers and ordinary
peers. The capacity of a peer is given by the number of queries that it can handle

158 STREAM DATA MANAGEMENT

per unit time. Each peer controls the number of queries that it receives by use of
tokens. Each peer sends tokens to its neighbours. The sum total of the tokens
that the node sends represents its query processing rate. A token represents that
the peer is willing to accept a single query from its neighbour. In Gia, a node
X can direct a query to a neighbour Y only if Y has expressed a willingness
to receive queries from X. Also, tokens are not distributed uniformly among
neighbours. The distribution takes into account the capacity of the neighbours.
This means that a high capacity node will get more tokens from its neighbours
than a low capacity node.

In Gia, low capacity peers are placed close to the high capacity peers. Ad-
ditionally, all peers maintain pointers to contents stored in their neighbours.
When two peers become neighbours, they exchange the indices on their data
which are periodically updated for incremental changes. Whenever a query
arrives at a peer, it tries to find matches with not only data stored at the peer but
also using the neighbours' indices. Since the high capacity peers will typically
have a lot of neighbours, the chances of finding a match for a query at a high
capacity peer is higher.

Search is keyword based search where popular data items are favoured.
Fault tolerance in Gia is achieved with the help of keep alive messages, when

a node forwards a query enough times, it sends back a keep alive message to the
originator. If the originator does not get any response or keep alive messages
in a certain time interval it then reissues the query.

2.6 Semantic Overlay Networks
Semantic Overlay Networks [Crespo and Garcia-Molina, 2002] are networks

where peers with similar content form a network. The documents in a peer
are first classified using a classifier into concepts and the peers belong to the
networks representing those concepts.

A query for a document is again classified into concept(s) and the relevant
networks are searched for this document. This approach reduces the number
of peers that need to be searched to find a document.

Commentary: The work of Semantic Overlay Networks depends heavily on
the classifiers and the classification hierarchy. This restricts the data that can
be stored in a Semantic Overlay Network to that which can be classified. In
fact, if one wants to store various types of data, then one may have to combine
more than one classification hierarchy. This may compound the effect of errors
in classification.

2.7 Distributed Hash Tables

Streaming Data Dissemination using Peer-Peer Systems 159

Distributed Hash Table protocols like Chord and CAN are scalable proto-
cols for lookup in a dynamic peer-peer system with frequent node arrivals and
departures.

Chord [Stoica et al.? 2001] uses consistent hashing to assign keys to nodes and
uses some routing information to locate a few other nodes in the network. Con-
sistent hashing ensures that with high probability, all nodes roughly receive the
same number of keys. In an N node network, each node maintains information
about only O(log N) nodes and a lookup requires O(log N) messages.

In Chord, identifiers are logically arranged in the form of a ring called the
Chord ring. Both nodes and keys are mapped to identifiers. Nodes are mapped
by means of their IP address and keys are mapped based on their values. The
hash function is chosen in such a manner that the nodes and the keys don't map
to the same hash value. A key k is stored to the first node that is equal to or
follows the key on this ring. The node is called the successor node of key k.

For efficient lookup, each node maintains information about a few other
nodes in the Chord ring by means of "finger tables". In particular, the ih entry
in the finger table of node n contains a pointer to the first node that succeeds
n by at least 2l~1 in the identifier space. The first entry in this finger table is
the successor of the node in the identifier space. Finger tables are periodically
updated to account for frequent node arrivals and departures.

CAN is another distributed hash table based approach that maps keys to a
logical d dimension coordinate space. The coordinate space is split into zones
in which each zone is taken care of by one node. Two nodes are neighbours
if their coordinate spans overlap along d — 1 dimensions and abut along one
dimension. Every node maintains information about its neighbours.

A <key, value> pair is hashed to a point p in the d dimensional space using
the key. The <key, value> pair is then stored in the node owning the zone
containing p. To locate the value for a key k, the node requesting it finds the
point p that the keys map to using the same hash function and routes the query
to the node containing the point via its neighbours.

When a node n wants to join the CAN, it randomly picks up a point p and
sends a join message to the CAN with this point p. This is routed to the node in
whose zone p currently is. This zone is then split into half, one half belonging
to the original node and the other half belonging to the new node. The keys
relevant to the new node, exchange hands and the neighbour information of
the two nodes and some of the neighbours of the old node is then updated.
When a node n leaves the system, it explicitly hands over its zone to one of its
neighbours.

Commentary: Peer-peer systems like CAN and Chord mandate a specific
network structure and assume total control over the location of data. This
results in lack of node autonomy.

160 STREAM DATA MANAGEMENT

3. Multimedia Streaming Using Peer-Peer Systems
The peer-peer systems we have seen so far deal with the issue of storage of

files and given a query, their retrieval. We shall now take a look at some of the
work that has been done in the field of multimedia streaming data in the presence
of peers. As seen from the previous section, peer-peer networks can be very
dynamic and diverse. Most of the streaming peer-peer systems address the issue
of maintaining the quality of the streaming data in a dynamic heterogeneous
peer-peer network. We take a look at two pieces of work, one [Padmanabhan
et al., 2002] which builds a content distribution network for streaming and the
other [Hefeeda et al., 2003] which is streaming application built on top of a
look-up based peer to peer system. A more comprehensive survey of peer-peer
systems for media streaming can be found at [Fuentes, 2002].

CoopNet [Padmanabhan et al., 2002] is a content distribution network for
live media streaming. CoopNet is a combination of a client-server architecture
and a peer-peer system. Normally, the network works as a client server system,
however when the server is overloaded then the clients cooperate with each
other, acting like peers, for effective media streaming. In [Padmanabhan et al.,
2002], the authors present algorithms to maintain live and on-demand streaming
under frequent node arrivals and departures.

CollectCast [Hefeeda et al., 2003] is an application level media streaming
service for peer-peer systems. To play media files, a single peer may not
be able to or may be unwilling to contribute the bandwidth required for the
streaming. Downloading the file is a possible solution but media files are
typically large in size and hence take a long time to download. CollectCast
presents a solution wherein multiple peers participate in streaming data to a
peer in a single streaming session to get the best possible quality.

CollectCast works on top of a look-up based peer-peer system. When Col-
lectCast gets a request from a peer for a media file, it first issues a look-up
request on the underlying peer-peer system. The peer-peer system returns a set
of peers having the media file. Of the set of peers returned by the peer-peer
system, CollectCast partitions this set into active peers and standby peers based
on the information of the underlying topology. CollectCast uses a path-based
topology aware selection wherein available bandwidth and loss rate for each
segment of the path between each of the senders and the receivers is predeter-
mined. If multiple senders share the same physical path, this is reflected in the
calculation of availability and bandwidth loss.

Once CollectCast partitions the senders into active and standby the rate and
data assignment component assigns to send sender in the active list, the rate at
which the sender is supposed to send and what part of the actual data is to be
sent. The active peers send the data to the receiver in parallel. The rate and
data assigned depends on the capability and capacity of the peer.

Streaming Data Dissemination using Peer-Peer Systems 161

The data sent by the peers is constantly monitored. In event of a slow
rate of transmission on part of the sender or sudden failures, etc., the load is
redistributed amongst the remaining active peers. If this is not feasible, it then
adds a peer from the stand by to the active list. The monitoring component
ensures that data quality to the receiver is not lost in spite of failures in the
network.

In addition to addressing the issues mentioned in the previous section, to
handle media streaming the peer-peer systems also need to address:

• Merging of Data: In video streaming applications, clips of a movie can
be distributed across peers. Or in a file sharing application, a file may be
distributed across peers. One needs algorithms to merge this distributed
data as one whole when needed. Note that this is not as easy, especially
if peers are dynamic.

• Real Time Delivery issues: The peer-peer system has to guarantee the
continuous delivery of the media streams in real time. This involves
dealing with loss of media stream packets, failures of links and nodes
and bottlenecks on the path.

4. Peer-Peer Systems for Dynamic Data Dissemination
The peer-peer systems we have seen so far deal with storage of static data,

like music files, media files, etc. A major design consideration while building
a peer-peer system is the ability to deal with the dynamics of the network - i.e.,
peers join and leave the network at any time. In the rest of this chapter we
explore the dynamics along yet another axis - where the data itself is dynamic.
As said earlier, dynamic data refers to data that changes continuously and at a
fast rate, that is streaming, i.e., new data can be viewed as being appended to
the old or historical data, and is aperiodic, i.e., the time between the updates
and the value of the updates are not known apriori.

To handle dynamic data in peer-peer systems, in addition to the issues dis-
cussed so far, we need to also look at the following issues:

• Dynamics has to be considered along three issues: (i) network is dynamic,
i.e., peers come and go, (ii) the data that the peers are interested in is
dynamic, i.e., the data changes with time and (iii) the interests of the
peers are dynamic (i.e., the data set that the peers are interested in change
from time to time).

• The existing searches will also have to take care of one more dimen-
sion while dealing with peer-peer data, namely, that of freshness versus
latency. One might have to choose an old or stale copy of some data
compared to the latest copy if the latency to fetch the latest copy is above
an acceptable threshold.

162 STREAM DATA MANAGEMENT

• Since the data is changing continuously, peers will need to be kept in-
formed of the changes - hence we need effective data dissemination/
invalidation techniques.

• Peers may have a different views of the data that is changing. Techniques
will be needed to form a coherent whole out of these different views.

• Since the data is changing rapidly and unpredictably, this may lead to
load imbalance at the peers. We will need to enhance existing techniques
or develop new load balancing techniques to handle this.

• The network should be resilient to failures.

4.1 Overview of Data Dissemination Techniques
Two basic techniques for point-point dissemination of data are widely used in

practice. We begin this section with a brief description of these complementary
techniques.

The Pull Approach The pull approach is the approach used by clients to
obtain data on the World Wide Web. Whenever an user is interested in some
data, the user sends a request to fetch the page from the data source. This form
of dissemination is passive. It is the responsibility of the user to get the data
that (s)he is interested in from the source.

The Push Approach Complimenting the pull approach is the push approach
wherein the user registers with the data sources the data that (s)he is interested
in and the source pushes all changes that the user is interested in. For e.g.,
publish-subscribe systems use push based delivery: users subscribe to specific
data and these systems push the changed data/digests to the subscribers.

There are many flavours to these basic algorithms. Some of these are:

• Periodic Pull: where pull takes place periodically. This is supported by
most of the current browsers.

• Aperiodic Pull: here the pull is aperiodic. The time between two consec-
utive pulls is calculated based on some on estimation techniques [Srini-
vasan et al., 1998], [Majumdar et al., 2003] [Zhu and Ravishankar,
2004].

• Periodic Push: here the source pushes the changes periodically. The
periodicity of pushing a particular data item depends on how many users
are interested in it, i.e., popularity and how often it changes [Acharya
etal., 1997].

Streaming Data Dissemination using Peer-Peer Systems 163

• Aperiodic Push: here the source pushes to a user whenever a change of
"interest" occurs. We'll expand on this in the rest of this section.

Push and pull have complimentary properties as shown in table 8.1. In pull,
a client has to keep polling to be up-to-date with the source, and this makes
it extremely network intensive. Using some estimation techniques [Srinivasan
et al., 1998], [Majumdar et a l , 2003], [Zhu and Ravishankar, 2004] one can
considerably reduce the the number of required pulls. Tn push, the onus of
keeping a client up-to-date lies with the source - this means that the source has
to maintain state about the client making push computationally expensive for
dynamic data.

The overheads in both pull and push limit the number of clients that can be
handled by the system. Since peer-peer systems have the potential for scal-
ability at low cost, we present a push based peer-peer architecture for data
dissemination.

To reduce push overheads, in our system, the work that the source needs to
do, to push changes, is distributed amongst peers. Since current technology
does not permit a push from the server to the client, we split our system into
two parts, peers and simple clients, where the peers push data to each other and
the clients pull the data from one or more peers.

Algorithm

Push
Pull

Overheads (Scalability)
Communication

Low
High

Computation
High
Low

State Space
High
Low

Table 8.1. Overheads in Push and Pull.

As mentioned earlier, transmission of every single update by a data source to
all the users of the data is not a very practical solution. However, typically,
not all users of dynamic data are interested in every change of the data. For
example, a user involved in exploiting exchange disparities in different markets
or an on-line stock trader may need changes of every single cent but a casual
observer of currency exchange rate fluctuations or stock prices may be content
with changes of a higher magnitude. This brings us to the notion of coherence
requirement.

4.2 Coherence Requirement
Consider a user that needs several time-varying data items. To maintain

coherency of a data item, it must be periodically refreshed. For highly dynamic
data it may not be feasible to refresh every single change. An attempt to do
so will result in either heavy network or source overload. To reduce network

164 STREAM DATA MANAGEMENT

Source
Push

Repository
(Proxy)

Pull

Client

Figure 8.1. The Problem of Maintaining Coherence.

utilization as well as server load, we can exploit the fact that the user may not
be interested in every change happening at the source.

We assume that a user specifies a coherence requirement c for each data
item of interest. The value of c denotes the maximum permissible deviation
of the value that the user has from the value at the source and thus constitutes
the user-specified tolerance. Observe that c can be specified in units of time
(e.g., the item should never be out-of-sync by more than 5 minutes) or value
(e.g., the stock price should never be out-of-sync by more than a dollar). In
this chapter, we only consider coherence requirements specified in terms of the
value of the object; maintaining coherence requirements in units of time is a
simpler problem that requires less sophisticated techniques (e.g., push every 5
minutes). As shown in Figure 8.1, the user is connected to the source via a set of
repositories. The data items at the repositories from which a user obtains data
must be refreshed in such a way that the coherence requirements are maintained.
Formally, let Sx (t) and Ux (t) denote the value of a data item x at the source and
the user, respectively, at time t (see Figure 8.1). Then, to maintain coherence,
we should have, V(t), \Ux(t) - Sx(t)\ < c.

The fidelity of the data seen by users depends on the degree to which their
coherence needs are met. We define the fidelity / observed by a user to be
the total length of time that the above inequality holds (normalized by the total
length of the observations). In addition to specifying the coherence requirement
c, users can also specify their fidelity requirement / for each data item so that
an algorithm that is capable of handling users' fidelity requirements (as well as
the coherence requirements) can adapt to users' fidelity needs.

We would like to mention here that due to the non-zero computational and
communication delays in real-world networks and systems, it is impossible to
achieve 100% fidelity in practice, even in expensive dedicated networks. The
goal of any dissemination algorithm is to meet the coherence requirements with
high fidelity in real-world settings.

4.3 A Peer-Peer Repository Framework
The focus of our work is to design and build a dynamic data distribution

system that is coherence-preserving, i.e., the delivered data must preserve asso-
ciated coherence requirements (the user specified bound on tolerable impreci-
sion) and resilient to failures. To this end, we consider a system in which a set

Streaming Data Dissemination using Peer-Peer Systems 165

of repositories cooperate with each other and the sources, forming a dedicated
peer-peer network.

O Source

Cooperating
•(\Repositorie

•(\ \ /

Figure 8.2. The Cooperative Repository Architecture.

As shown in Figure 8.2, our network consist of sources, repositories and
clients. Clients (and repositories) need data items at some coherence require-
ments. Clients are connected to the source via a set of repositories. The archi-
tecture uses push to disseminate updates to the repositories.

For each data item we build a logical overlay network, as described below.
Consider a data item x. We assume that x is served by only one source. It is
possible to extend the algorithm to deal with multiple sources, but for simplicity
we do not consider this case here. Let repositories i ^ , . . . , Rn be interested in
x. The source directly serves some of these repositories. These repositories in
turn serve a subset of the remaining repositories such that the resulting network
is a tree rooted at the source and consisting of repositories JRL, . . . , i?^. We
refer to this tree as the dynamic data dissemination tree, or c?£, for x. The
children of a node in the tree are also called the dependents of the node. Thus,
a repository serves not only its users but also its dependent repositories. The
source pushes updates to its dependents in the St, which in turn push these
changes to their dependents and the end-users. Not every update needs to be
pushed to a dependent—only those updates necessary to maintain the coherence
requirements at a dependent need to be pushed. To understand when an update
should be pushed, let (P and cq denote the coherence requirements of data item
x at repositories P and Q, respectively. Suppose P serves Q. To effectively
disseminate updates to its dependents, the coherence requirement at a repository

166 STREAM DATA MANAGEMENT

should be at least as stringent as those of its dependents:

(? < cq (8.1)

Given the coherence requirement of each repository and assuming that the
above condition holds for all nodes and their dependents in the c?£, we now
derive the condition that must be satisfied during the dissemination of updates.
Let rc|, x | + 1 , X | + 2 J • • • xi+n • • • denote the sequence of updates to a data item x
at the source S. This is the data stream x. Let a£, o £ + 1 , . . . denote the sequence
of updates received by a dependent repository P . Let £ correspond to update
x'l at the source and let a^+1 correspond to update x?+k where k > 1. Then,
Vra, 1 < m < k - 1, |xf+m - xf | < <?.
Thus, as long as the magnitude of the difference between last disseminated
value and the current value is less than the coherence requirement, the current
update is not disseminated (only updates that exceed the coherence tolerance
cp are disseminated). In other words, the repository P sees only a "projection"
of the sequence of updates seen at the source. Generalizing, given a St, each
downstream repository sees only a projection of the update sequence seen by
its predecessor.

In the cooperative repository architecture, repositories filter the data that is
streamed to them before forwarding the data to their dependents. Note that,
in principle, a repository R can be a dependent of another repository Q for
data item x whereas i? could obtain data item, y, from Q. In other words the
repositories form peer-peer network for selective dissemination of streaming
data to each other and to the clients.

Various issues like efficient algorithms to build the dissemination network,
how to make the network resilient to failures, how to decrease the response
time by effective scheduling are discussed in [Shah et al., 2003]. [Shah et al.,
2002] analyzes the degree of cooperation - essentially how much cooperation
is good. Interestingly we found that not only is too little cooperation bad but
even that too much of it also overloads the network and we had a heuristic to
determine the degree of cooperation. In [Agarwal et al., 2004], we handle the
issue of which client to connect to which repositories for its data needs.

5. Conclusions
In this chapter we discussed a dissemination system for dynamic data using

peers. While we have solutions for some of the problems encountered in peer-
peer dynamic data dissemination, there are still some issues that we need to
explore: Currently, we have no notion of search in our repository network -
when a client needs a data item for the first time, it approaches the data's source
to determine which peer to obtain the data from. Also our network consists of

Streaming Data Dissemination using Peer-Peer Systems 167

dedicated peers. To extend this to a dynamic peer network with facilities of
search, merging of data, etc., is part of our future work.

Notes
1. The term data streams is also used to model situations where in addition the memory available for

computation is limited.
2. We would like to mention here that our description of the peer-peer systems is not intended to be

comprehensive or complete. Rather it is an attempt on our part to a give a flavour of the different kinds of
peer-peer systems that exist and the various issues that are addressed by them.

3. As opposed to, say, peer-peer systems for media streaming as discussed in Section 3 or peer-peer
systems for disseminating dynamic data discussed in Section 4.

4. Two peers connected to each other are called neighbours of each other.

References
Acharya, S., Franklin, M. J., and Zdonik, S. B. (1997). Balancing push and

pull for data broadcast. In Proceedings of the ACMSIGMOD Conference.
Agarwal, S., Ramamritham, K., and Shah, S. (2004). Construction of a

temporal coherency preserving dynamic data dissemination network. In The
25th IEEE International Real Time Systems Symposium.

Chawathe, Yatin, Ratnasamy, Sylvia, Breslau, Lee, Lanham, Nick, and
Shenker, Scott (2003). Making Gnutella-like p2p systems scalable. In Pro-
ceedings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 407-418. ACM Press.

Crespo, Arturo and Garcia-Molina, H. (2002). Semantic overlay networks
for p2p systems. Technical report, Computer Science Department, Stanford
University.

Fuentes, Francisco (2002). An overview of media streaming over peer-to-
peer networks. Technical report, Technische Univeritat Munchen.

Gnutella http://www.gnutella.com.
Hefeeda, M., Habib, A., Botev, B., Xu, D., and Bhargava, D. B. (2003).

Collectcast: A peer-to-peer service for media streaming. (Submitted to) ACM
Multimedia Systems Journal.

Majumdar, R., Moudgalya, K., and Ramamritham, K. (2003). Adaptive
coherency maintenance techniques for time-varying data. In The 24th IEEE
International Real Time Systems Symposium.

Marti, Sergio and Molina, Hector Garcia (2004). Limited reputation sharing
in p2p systems. In In ACM Conference on Electronic Commerce.

Neoganesh http://www.openclinical.org/aisp-neoganesh.html.
Padmanabhan, V., Wang, H., Chou, P., and Sripanidkulchai, K. (2002).

Distributing streaming media content using cooperative networking. In In
ACM/IEEE NOSSDAV.

Ratnasamy, Sylvia, Francis, Paul, Handley, Mark, Karp, Richard, and Shenker,
Scott (2001). A scalable content-addressable network. In Proceedings of the

168 STREAM DATA MANAGEMENT

2001 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 161-172. ACM Press.

Shah, S., Dharmarajan, S., and Ramamritham, K. (2003). An efficient and
resilient approach to filtering and disseminating dynamic data. In Proceedings
of the 29th Conference on VLDB.

Shah, S., Ramamritham, K., and Shenoy, P. (2002). Maintaining coherency
of dynamic data in cooperating repositories. In Proceedings of the 28th Con-
ference on VLDB.

Srinivasan, R., Liang, C , and Ramamritham, K. (1998). Maintaining tempo-
ral coherency of virtual data warehouses. In The 19th IEEE Real-Time Systems
Symposium.

Stoica, Ion, Morris, Robert, Karger, David, Kaashoek, M. Frans, and Bal-
akrishnan, Hari (2001). Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications, pages
149-160. ACM Press.

Zhu, S. and Ravishankar, C. (2004). Stochastic consistency, and scalable
pull-based caching for erratic data sources. In Proceedings of the 30th Confer-
ence on VLDB.

Index

Active database systems, 4
AQuery, 7
Aurora, 8-9,48, 84, 114
CAPE, 9, 84
Chain scheduling, 26
Coherence requirement, 164
CollectCast, 160
CoopNet, 160
COUGAR, 9
CQL,7,114
Data layers, 145
Data merging, 38
Data stream systems

Aurora, 8-9, 48, 84, 114
CAPE, 9, 84
COUGAR, 9
Gigascope, 9, 38,48
Hancock, 9
NiagaraCQ, 10,114
OpenCQ, 114
StatStream, 10
STREAM, 10,48, 84
Tapestry, 10, 113
TelegraphCQ, 10, 84, 113
Tribeca, 113

Data
metreological, 149
moving objects, 147
oceanographic, 149
raster, 134, 140
vector, 134, 140

Disorder, 47
degree, 48

Distributed Hash Table, 158
CAN, 159
Chord, 159

Distributed stream processing, 104
Drop-boxes, 27
Dynamic query plans, 5
Eddy, 29
ESL-TS,7, 116
Filtering

precise, 37
Geographic data servers, 136

Geographica data sources
streams, 139

Gia, 157
GIDB, 134
Gigascope, 9, 38,48
Gnutella, 157
GSQL, 7
Hancock, 9
Index-Filter, 63, 69
Infeasible plan, 26
Join algorithm

constratint-exploiting, 88
Join

multi-way, 21, 101
symmetric hash, 18, 36

KMP text search algorithm, 127
Load shedding, 26, 38
Measurement data streams, 2
Multi-way join, 21, 101
Napster, 157
NiagaraCQ, 10, 114
OpenCQ, 114
OpenGIS Consortium, 138
Optimization

punctuation-driven, 101
Peer-peer systems, 167

dynamic data dissemination, 161
streaming, 160

Performance metrics, 8
Progress chart, 25
Pull approach, 162
Punctuation, 41, 85, 88

inserting, 44
punctuation-drive optimization, 101

Push-based execution model, 16
Push approach, 162
Quality of Serivice, 9
Quality of Service, 26, 95
Query languages

AQuery, 7
CQL,7, 114
ESL-TS, 116
GSQL, 7
SEQUIN, 115

170 STREAM DATA MANAGEMENT

SQL-3, 122
SQL-TS, 115
SQL/LPP, 115
SRQL, 115
StreaQuel, 7

Query optimization, 127
multi-query optimization, 8

Query scrambling, 28
Rate-based cost model, 23
Routing strategy, 30
Run-time optimization, 98
Scheduling, 25

adaptive selection of algorithms, 94
Search mechanisms, 154
Semantic Overlay Networks, 158
SEQUIN, 115
SQL-3, 122
SQL-TS, 115
SQL/LPP, 115
SRQL, 115
StatStream, 10
Stem, 29
STREAM, 10,48,84
StreaQuel, 7
Symmetric hash join, 18, 36
Synopses

AMS sketches, 50

FM sketches, 51
Tapestry, 10, 113
TelegraphCQ, 10,84,113
Temporal database systems, 4
Theme server, 145
Time-series queries, 114
Time series analysis, 117
Timestamps, 6

explicit, 6
implicit, 6

Transactional data streams, 2
Tribeca, 113
User-specified tolerance, 164
User Defined Aggregates, 122
Utilization, 23
Window, 6, 46

landmark, 7,47
scope, 7
sliding, 7, 17,47,85,88, 123
time-based or physical, 7
tumbling, 47,122
tuple-based or logical, 7

XML catalog, 149
XML query processing

index-based algorithms, 61
navigation-based algorithms, 62

XQuery, 64
Y-Filter, 63

